На быстрых дифференциальных скоростях. Нажмите на кнопку "Поворачиваем", чтобы увидеть, как работает дифференциал во время поворота, и "Едем прямо", чтобы посмотреть, как движутся его компоненты во время прямолинейного движения. Устройство главной передач

Подписаться
Вступай в сообщество «auto-piter.ru»!
ВКонтакте:

Дифференциал – это механизм трансмиссии, распределяющий подводимый к нему крутящий момент между приводными валами и позволяющий колесам вращаться с разными угловыми скоростями. Особенно это заметно, когда машина проходит поворот. Дифференциал обеспечивает безопасное и комфортное вождение на сухой дороге с твердым покрытием. Однако если автомобиль покинет ее пределы и продолжит двигаться по пересеченной местности, а также в случае гололеда (и других тяжелых погодных условий) этот механизм может лишить автомобиль возможности передвигаться. О том, что такое дифференциал, как он устроен, в чем его вред для внедорожников и как с этим бороться — пойдет речь ниже.

Дифференциал как часть трансмиссии

Дифференциал в автомобиле - это механизм, распределяющий крутящий момент карданного вала трансмиссии между ведущими колесами передней или задней оси (в зависимости от типа привода), позволяя каждому из них вращаться без пробуксовки. В этом заключается основное назначение дифференциала.

Ведуший мост с дифференциалом в разрезе

При прямолинейном движении, когда колеса нагружены одинаково и имеют равную угловую скорость вращения — механизм работает в качестве передаточного звена. Если условия движения изменяются (поворот, пробуксовка) — нагрузка становится неравномерной. У полуосей появляется необходимость вращаться с разными скоростями, и, как следствие, становится необходимым распределить полученный крутящий момент между ними в определенном соотношении. Тогда узел выполняет вторую важную функцию: обеспечение безопасного маневрирования автомобиля.

Схема расположения дифференциала зависит от типа привода автомобиля:

  1. Передний привод – картер коробки передач.
  2. Задний привод – корпус ведущего моста.
  3. Полный привод – корпусы переднего и заднего мостов (для передачи крутящего момента ведущим колесам) или раздаточная коробка (для передачи крутящего момента ведущим мостам).

Дифференциал на автомобилях появился не сразу. Конструкторы первых «самодвижущихся экипажей» были очень озадачены плохой маневренностью своих изобретений. Вращение колёс с одинаковой угловой скоростью во время прохождения поворота приводило к тому, что одно из них начинало буксовать или, наоборот, полностью теряло контакт с дорогой. Инженеры вспомнили, что на ранних прототипах первых автомобилей, снабжаемых паровыми двигателями, было устройство, позволявшее избежать потери управляемости.

Механизм распределения вращающего момента изобрёл француз Онесифор Пеккёр. В устройстве Пеккёра присутствовали валы и шестерни. Через них крутящий момент от мотора поступал к ведущим колёсам. Но даже после применения изобретения Пёккера проблема пробуксовки колёс на поворотах не решилась полностью. Выявились недостатки системы. Например, одно из колес в какой-то момент терял сцепление с дорогой. Сильнее всего это проявлялось на обледенелых участках.

Пробуксовка в таких условиях часто приводила к авариям, поэтому конструкторы надолго задумались над тем, как предотвратить занос машины. Решение было найдено Фердинандом Порше. Он стал изобретателем кулачкового механизма, который ограничивал проскальзывание колёс ведущего моста. Немецкое устройство дифференциала нашло применение в автомобилях Volkswagen.

Как устроен дифференциал


Принципиальная схема дифференциала

Узел работает как планетарный редуктор. Принципиальное устройство дифференциала: шестерни полуосей (5) и сателлитов (4) размещены в чашке (3). Чашка (корпус) жестко соединена с ведомой шестерней (2), которая принимает крутящий момент от ведущей шестерни главной передачи (1). Корпус передает вращение посредством сателлитов полуосям, вращающим ведущие колеса. Разные угловые скорости обеспечиваются благодаря работе сателлитов. Величина крутящего момента остается неизменной.

Применение дифференциалов в зависимости от их видов

Устройства используют для передачи крутящего момента ведущим колесам и ведущим мостам автомобиля.

Грузовики и легковые автомобили всех типов приводов имеют межколесный дифференциал, передающий вращение колесам. Межосевой дифференциал, распределяющий крутящий момент между мостами, применяют исключительно в полноприводных машинах.

По типу применяемой зубчатой передачи различают следующие виды механизмов:

  1. конический;
  2. цилиндрический;
  3. червячный.

По количеству зубьев шестерен полуосей:

  1. симметричный;
  2. несимметричный.

Благодаря его свойству пропорционально распределять крутящий момент несимметричный дифференциал с цилиндрической передачей устанавливают между мостами полноприводных автомобилей.

Заднеприводные и переднеприводные автомобили оснащают коническим симметричным дифференциалом.

Червячная передача, являясь самой универсальной, используется во всех типах устройств со всеми приводами.

Схема работы дифференциала

Рассмотрим принцип, по которому работает симметричный межколесный конический дифференциал, распределяющий крутящий момент между колесами в трех различных условиях:

  1. прямолинейное движение;
  2. поворот;
  3. пробуксовка.

При прямолинейном движении

Прямолинейное движение характеризуется равномерным распределением нагрузки между колесами автомобиля. Они имеют одинаковую угловую скорость. Сателлиты, размещенные в корпусе, не вращаются вокруг своих осей. Они передают крутящий момент от ведомой шестерни главной передачи к полуосям через неподвижное зубчатое зацепление.


Работа дифференциала при повороте и прямолинейном движении

При повороте

Когда транспортное средство поворачивает, силы сопротивления и нагрузки распределяются следующим образом:

  • Внутреннее колесо, имеющее меньший радиус от центра поворота, испытывает сопротивление большей силы, чем наружное. Увеличенная нагрузка заставляет его снизить скорость вращения.
  • Наружное колесо, двигаясь по большему радиусу (большей траектории), наоборот, должно увеличить угловую скорость, чтобы автомобиль мог повернуть плавно, без пробуксовки.

Таким образом, колеса должны иметь разные угловые скорости. Замедление вращения полуоси внутреннего колеса приводит сателлиты в движение. Они, в свою очередь, посредством конической зубчатой передачи увеличивают скорость вращения полуоси наружного колеса. Крутящий момент, получаемый от главной передачи, остается неизменным.

При пробуксовке

Колеса автомобиля, движущегося даже прямолинейно по скользкой дороге или бездорожью, могут испытывать различную нагрузку: одно из них пробуксовывает, теряя сцепление с дорогой; другое, становясь более нагруженным, замедляется. Повторяется схема поворота. Только теперь она приносит вред: буксующее колесо может получить 100% принятого дифференциалом крутящего момента, а нагруженное вообще перестанет вращаться. Движение автомобиля прекратится.

Эти недостатки работы узла решаются различными способами:

Блокировка дифференциала и система курсовой устойчивости


Принудительная блокировка дифференциала с гидравлическим приводом

Чтобы крутящий момент полуосей снова стал одинаковым, нужно блокировать действие сателлитов или обеспечить его передачу от чашки на нагруженную полуось.

Это особенно актуально для машин повышенной проходимости, имеющих полный привод 4Х4. Не только потому что они предназначены для езды по местности с тяжелыми дорожными условиями. Стоит машине, оснащенной тремя дифференциалами (два межколесных, один межосевой), хотя бы в одной из четырех точек потерять сцепление – величина крутящего момента остальных колес устремится к нулевому значению, и машина откажется ехать.

Избежать неприятностей помогает блокировка, которая может быть либо частичной, либо полной (зависит от степени перераспределения усилий между полуосями), а также либо ручной, либо автоматической (зависит от степени контроля со стороны водителя).

Наиболее сложным совершенным способом устранить недостатки узла является электронная блокировка, реализуемая на базе системы курсовой устойчивости, датчики которой контролирует все необходимые параметры во время движения автомобиля. На основе полученных данных работа автомобиля корректируется автоматически.

Безопасность прежде всего

Дифференциал создан для обеспечения безопасного комфортного маневрирования на трассе. Описанные выше недостатки касаются езды в экстремальных условиях, а также по пересеченной местности. Поэтому если на автомобиле установлен привод ручной блокировки, использовать его нужно исключительно в соответствующих дорожных условиях. А шоссейные автомобили, которые сложно «уговорить» ехать медленнее 100 км/час, эксплуатировать без дифференциала вообще невозможно и даже опасно. Такой вот нехитрый, но бесконечно важный механизм в трансмиссии.

При движении автомобиля в поворотах колёса ведущей оси проходят путь разной длины. Чтобы шины не проскальзывали, колёса должны вращаться с разными скоростями. Рассмотрим: что такое дифференциал и принцип его работы, какие бывают разновидности.

Что это такое?

Дифференциал - это механизм, позволяющий колёсам ведущей оси вращаться с разными скоростями и одинаковым, подводящимся к ним, крутящим моментом. В трансмиссии с одной ведущей осью дифференциал устанавливается между приводами колёс (межколёсный). В полноприводных авто он может находиться между ведущими осями (межосевой).

Произведение силы тяги на радиус колеса даёт тот крутящий момент, который дифференциал должен передать на колёса. Когда сцепление с дорогой слабое или одно колесо вывешено, крутящий момент и сила тяги на колесе очень малы или отсутствуют, автомобиль не сможет продолжить движение. Это особенность дифференциала с коническими шестернями, получившего широкое распространение. Этот вид дифференциала называют симметричным, так как он поровну распределяет крутящий момент между колёсами.

Это происходит потому, что сателлит работает как равноплечий рычаг и передаёт только равные усилия к шестерням полуоси, а соответственно и к ведущим колёсам. Если одно из колёс имеет малое сцепление с дорожным покрытием, то эффективный крутящий момент на нём небольшой, соответственно симметричный дифференциал подведёт такое же усилие к другому колесу. То есть, если одно колесо буксует, сила тяги на втором равна нулю, что отрицательно сказывается на проходимости.

Для её улучшения на автомобилях применяют полную или частичную блокировку дифференциалов , степень которой оценивают коэффициентом блокировки.


Коэффициент блокировки (Кб) - соотношение крутящего момента на отстающем колесе к моменту на забегающем колесе. Его величина для симметричного дифференциала всегда равна 1, для дифференциалов повышенного трения от 1 до 5. Чем больше Кб, тем лучше проходимость автомобиля. То есть, при Кб = 3 момент на отстающем колесе будет в три раза больше, чем на буксующем. Но момент на колесе в эту секунду будет возможным от 20 до 70%, в зависимости от возможности блокирующего механизма.

Существует несколько видов дифференциалов.

Дифференциал с полной блокировкой

Принудительная блокировка дифференциала используется в основном на внедорожниках и грузовых машинах, для улучшения проходимости на бездорожье. Включается с помощью клавиши в салоне, по мере необходимости. Очень важно отключить блокировку при выезде на сухой грунт, во избежании поломки полуосей.

Пример - блокировка межосевого дифференциала на ВАЗ-2121. Приводится в действие водителем принудительно. Угловые скорости колёс здесь всегда равны, что противоречит условиям движения автомобиля по кривой, приводит к износу резины и ухудшению управляемости по твёрдому покрытию.

Вискомуфта

Вискомуфта – многодисковая муфта, в которой передаваемый момент возрастает с увеличением разности скоростей ведущего и ведомого валов. Используется в упрощенных системах постоянного полного привода и в качестве блокирующего механизма дифференциалов.

Принцип работы вискомуфты основан на особых свойствах специальной силиконовой жидкости: при повышении температуры ее вязкость не понижается, как, например, у масла, а повышается. Вискомуфта представляет собой цилиндр, заполненный силиконовой жидкостью. Внутри его находится пакет из перфорированных дисков, соединенных через один соответственно с ведущим и ведомым валами.

В полноприводной трансмиссии при нормальных условиях движения валы вращаются примерно с одинаковой скоростью: входной – под действием крутящего момента от основного ведущего моста, а выходной вращают колеса, с которыми он соединен. При буксовании колес основного ведущего моста входной вал вращается быстрее выходного (машина практически стоит), жидкость нагревается от трения о диски, и муфта начинает передавать больший момент на выходной вал.

Существенный недостаток вискомуфты: на срабатывание муфты требуется время, а оптимальную ее характеристику трудно подобрать. Поэтому многие производители отказываются от применения вискомуфты в пользу управляемых электроникой многодисковых сцеплений.

Торсен

От англ. TORQUE - крутящий момент и «SENSING» - чувствительный, то есть чувствительный к крутящему моменту . Сателлиты расположены в корпусе перпендикулярно его оси, объединены между собой попарно с помощью прямозубого зацепления, а с полуосевыми шестернями связаны червячным зацеплением. В повороте полуосевая шестерня, связанная с отстающим колесом, поворачивает входящий с ней в зацепление сателлит, он, в свою очередь, вращает второй сателлит и шестерню полуоси.

Такой жесткой кинематической связью колёсам автомобиля обеспечивается возможность вращаться с разной скоростью. Силы трения, возникающие в червячном зацеплении от разности моментов на колёсах, осуществляют блокировку дифференциала. Недостаток конструкции – сложность изготовления, сборки агрегата в целом и ремонта.

Квайф

Сателлиты расположены в два ряда параллельно оси вращения корпуса. Причём они крепятся не на осях, а находятся в закрытых с обеих сторон отверстиях корпуса. Правый ряд сателлитов (их может быть от 3 до 5) входит в зацепление с правой шестерней полуоси, левый - с левой. Кроме того, сателлиты из разных рядов зацепляются между собой через один.

Когда одно из колёс начинает отставать, связанная с ним полуосевая шестерня начинает вращаться медленнее корпуса дифференциала и поворачивать входящий с ней в зацепление сателлит. Он передаёт движение связанному с ним сателлиту, а тот в свою очередь, на полуосевую шестерню. Так обеспечиваются разные обороты колёс в повороте.

Благодаря разности крутящих моментов на колёсах возникают силы трения, осуществляющие блокировку, что увеличивает силу тяги автомобиля, повышая его проходимость. Дифференциалы такого типа получили наибольшее распространение в тюнинге.

Дифференциал в автомобиле работает с целью осуществления следующих трёх задач:

  1. Дифференциал передаёт мощность двигателя на колёса машины.
  2. Делает последний шаг в уменьшении числа оборотов к колёсам (мы ведь помним, что первый такой шаг делает коробка передач) и, следовательно, увеличивая крутящий момент , передаваемый тем же ведущим колёсам.
  3. Передавая мощность на ведущие колёса (всегда на чётное количество колёс на одной оси: на два или на все четыре), дифференциал позволяет каждому из них вращаться с разными скоростями (это именно то, от чего дифференциал заработал своё название).

В этой статье Вы узнаете, почему Ваш автомобиль нуждается в разных оборотах вращения колёс, как это обеспечивается, что такое дифференциал, как дифференциал работает и каковы его основные недостатки. Мы также рассмотрим несколько его типов.

Для чего нужен дифференциал?

Автомобильные колёса вращаются с разной скоростью, особенно это заметно при повороте. Вы можете видеть в анимации ниже, что каждое колесо проезжает очень разное расстояние, когда автомобиль поворачивает, и что внутренние колёса проезжают гораздо более короткое расстояние, чем внешние. Поскольку скорость равна расстоянию, поделённому на время, необходимое для проезда этого расстояния, то получается, что колёса, которые проезжают меньшее расстояние, вращаются с более низкой скоростью: так, при повороте налево левые колёса будут крутиться медленнее, чем правые, и наоборот. Также следует отметить, что передние колёса проезжают расстояние, отличающееся от того, которое проезжают задние колёса.

Кликните для просмотра анимации

Для автомобилей с приводом только на одну ось колёс - будь то на задние колёса или же на передние - разность вращения передних колёс к задним это не проблема. Нет никакой связи между ними, поэтому они вращаются независимо. Но ведущие колёса связаны между собой так, чтобы один двигатель и трансмиссия должны приводить в движение оба колеса, при этом, с разной скоростью их вращения. Но как же быть, если двигатель у нас всего один?! Если Ваш автомобиль не оснащён дифференциалом, колёса должны быть заблокированы вместе, будучи вынужденными вращаться с одной и той же скоростью. Это сделало бы манёвры поворотов - даже под небольшим углом - сложными: у таких автомобилей, чтобы иметь возможность повернуть, одной из шин обязательно придётся скользить, либо другой обязательно пробуксовывать. А с современными покрышками и асфальтовыми дорогами для этого потребуется достаточно много сил. Эта сила должна будет передаваться через ось от одного колеса к другому, возложив, таким образом, очень тяжёлое бремя на компоненты оси.

Именно с этой проблемой безукоризненно справляется дифференциал.

Что такое дифференциал?

Дифференциал - это устройство, которое разделяет крутящий момент двигателя на два пути с выходами, что позволяет каждому выходу вращаться с различной скоростью.

Дифференциал имеется на всех современных легковых и грузовых автомобилях, а также на многих полноприводных машинах. Причём, все полноприводные авто должны иметь дифференциал между каждым набором ведущих колёс на одной оси, и, кроме того, они нуждаются в дифференциале между парами передних и задних колёс (помните начало статьи - потому что передние колёса проходят другую дистанцию, в отличие от задних колёс при движении автомобиля по направлению, отличному от прямого?).

Тем не менее, некоторые полноприводные машины не имеют дифференциала между передними и задними колёсами, и, вместо этого, эти пары колёс тесно связаны между собой так, что передние и задние колёса должны крутиться с одной и той же скоростью. Вот почему на таких автомобилях производители не рекомендуют ездит по твёрдому покрытию в режиме полного привода, а включать его только на бездорожье.

А теперь давайте выясним, в каком месте автомобиля обычно располагается дифференциал в зависимости от типа привода автомобиля:



Как работает дифференциал?

Мы начнем с простейшего типа дифференциала, называемого открытым дифференциалом . Но сначала мы должны изучить некоторые термины - посмотрите на рисунок ниже, там Вы найдёте основные компоненты работы дифференциала:


Таким образом, дифференциал состоит из следующих основных частей:

  1. Ведущий вал - передаёт крутящий момент, ведя его от коробки передач к началу дифференциала
  2. Ведущая шестерня ведущего вала - косозубая небольшая шестерня в форме конуса, которая используется для сцепки с механизмом дифференциала
  3. Коронная шестерня - ведомая шестерня также в форме конуса, которая приводится в движение (вращение) ведущей шестерней. Ведущая и ведомая шестерня, вместе взятые, называются главной передачей и именно они служат последним этапом уменьшения скорости вращения, которое в конечном счёте достигнет колёс (коронная шестерня всегда меньше ведущей, а, значит, ведущей шестерне придётся сделать намного больше оборотов, пока ведомая сделает всего один оборот вокруг себя).
  4. Шестерни полуосей - это последние шестерни на пути передачи вращения от ведущего вала к колёсам.
  5. Сателлиты - планетарный механизм, который как раз и осуществляет ключевую роль в обеспечении разности вращения колёс при повороте.
  6. Полуоси - валы, идущие от дифференциала непосредственно к колёсам.

А теперь давайте перейдём к ключевому и самому важному понимаю, как работает дифференциал, и посмотрим на анимации ниже, как вышеперечисленные компоненты открытого дифференциала работают в двух случаях:

  • Когда автомобиль едет прямо.
  • Когда автомобиль поворачивает.

Посмотрите сами - всё достаточно просто:

Нажмите на кнопку "Поворачиваем", чтобы увидеть, как работает дифференциал во время поворота, и "Едем прямо", чтобы посмотреть, как движутся его компоненты во время прямолинейного движения

Как мы видим, когда мы едем прямо на своей машине, то фактически весь механизм дифференциала крутится с одной скоростью: частота вращения входного вала равна частоте вращения полуосей и, соответственно, частоте вращения колёс. Но стоит нам немного повернуть руль, как ситуация меняется, и в свою главную роль вступают теперь сателлиты, которые разблокируются за счёт разности нагрузки на колёса (когда одно колесо пытается пробуксовать, крутясь быстрее), и вся мощность от двигателя теперь проходит через них. А за счёт того, что два сателлита - это две независимые шестерни, получается, что они и передают разную частоту вращения полуосям, как бы раздваивая её, но не деля всю мощность поровну, а передавая наибольшую мощность тому колесу, которое движется по внешнему краю во время поворота автомобиля и, соответственно, раскручивая его сильнее (повышая его количество оборотов). И разность передаваемой мощности при этом тем сильнее, чем круче поворачивает машина (точнее, чем меньше радиус поворота этой машины).

Какой главный недостаток дифференциала?

Открытый дифференциал передаёт вращение тому или иному колесу практически в любом соотношении, в том числе и в соотношении 100%/0% - когда одно из ведущих колёс принимает весь крутящий момент на себя. В то же время распределение такого вращения между колёсами происходит при изменении нагрузки на эти колёса (а вместе с ними на полуоси) - то есть колесо с меньшей нагрузкой в повороте получает больше вращения. Но здесь кроется один существенный недостаток, который имеет место при определённых условиях, а именно, когда оба ведущих колеса находятся в грязи, снегу или на льду, и автомобиль начинает буксовать - в этом случае то колесо, которое имеет меньшее сцепление с поверхностью, будет получать львиную долю вращения. Проще говоря, если Вы, к примеру, застряли в снегу , сев "на пузо" - когда одно колесо сцеплено с поверхностью снега, а второе вовсе висит в воздухе, то получать мощность за счёт соответствующего распределения по полуосям дифференциала будет как раз то колесо, которое находится на весу, и именно оно будет беспомощно крутиться в воздухе. Особенно остро данная проблема стоит у внедорожников и вездеходов.

Какие виды дифференциалов бывают?

Решением этих проблем является дифференциал повышенного трения (LSD, его ещё называют дифференциалом с ограниченным проскальзыванием ). Дифференциалы повышенного трения используют различные механизмы для обеспечения нормального дифференциального действия в различных условиях езды. Когда колесо скользит, такой дифференциал позволяет передать больше крутящего момента как раз на нескользящее колесо.

На внедорожниках и вездеходах также применяются дифференциалы с ручным отключением, которые, впрочем, очень часто не защищены от случайного отключения или отключения не в то время по незнанию - дело в том, что возможность отключения дифференциала на ходу влечёт за собой возможную его поломку, и это распространённая проблема.

Что такое вискомуфта (вязкая муфта)?

Вискомуфта чаще всего встречается во всех полноприводных машинах. И, если Вы читали статью о принципе работы гидротрансформатора , то знайте, что вискомуфта имеет схожую с ним схему работы. Она широко используется для связи задних колёс с передними таким образом, что когда один набор колёс начинает проскальзывать, крутящий момент будет передан на другой набор, тем самым решая злободневную проблему буксующего колеса, описанную выше.

Вязкая муфта имеет два набора пластин внутри герметичного корпуса, который заполнен вязкой жидкостью (несколько более вязкой, чем трансмиссионное масло , к примеру). Один набор пластин соединён с каждым выходным валом. В нормальных условиях оба набора пластин и их порция вязкой жидкости движутся с одной и той же скоростью. Но когда одна ось пытается вращаться быстрее, возможно, потому что она проскальзывает, множество пластин, соответствующих колёсам этой оси, вращаются быстрее, чем другие. Вязкая жидкость, находящаяся между пластинами, пытается догнать более быстрые диски, тем самым ведя за собой к этому и медленные диски. Это передает больший крутящий момент на медленнее вращающиеся колёса, которые как раз и не скользят.


Устройство вискомуфты

Когда автомобиль поворачивает, разница в скорости между колёсами на одной оси не так велика, как тогда, когда одно из колёс попросту проскальзывает. Чем быстрее пластины вращаются относительно друг друга, тем больше крутящего момента приходится на муфту. Муфта не мешает виткам крутиться, потому что величина крутящего момента, передаваемого во время поворота, мала.

Простой эксперимент с яйцом поможет объяснить поведение вискомуфты. Если Вы поставите яйцо на кухонный стол, скорлупа, белок и желток будут неподвижны. Но когда Вы начнёте раскручивать яйцо, скорлупа яйца будет двигаться с более высокой скоростью, чем белок, а белок немного быстрее, ем желток, но желток затем быстро наверстает упущенное. Кстати, чтобы убедиться в этих словах, проведите эксперимент, как только у Вас появится яйцо: раскрутите его достаточно быстро, а затем остановите его, потом просто отпустите яйцо, и оно начнёт снова вращаться (ну, или хотя бы дёрнется в сторону предыдущего вращения). В этом эксперименте мы использовали трение между скорлупой, белком и желтком, применяя силу только на скорлупу. Сначала мы раскрутили фактически скорлупу, и с некоторой задержкой за скорлупой за счёт трения начали раскручиваться белок, а затем и желток. А когда мы остановили скорлупу, то то же трение - между всё еще движущимся желтком, белком и скорлупой - применило силу к скорлупе, заставляя его ускориться. Так и в случае вискомуфты, сила передаётся между жидкостью и наборами пластин таким же образом, как между желтком, белком и скорлупой.

Что такое дифференциал Torsen?

Дифференциал Torsen является чисто механическим устройством: он не завязан никакой , а также муфтами или вязкими жидкостями и по своей сути представляет собой довольно простой механизм, очень схожий с открытым дифференциалом.

Torsen работает также, как и открытый дифференциал, когда величина крутящего момента между двумя ведущими колёсами равная. Но как только одно из колёс начинает терять сцепление с дорогой, разница в крутящем моменте приводит к блокировке вместе шестерен в дифференциале Torsen.

Такой дифференциал часто используется в мощных и очень мощных полноприводных машинах. Как и вискомуфта, он часто используется для передачи мощности между передними и задними колёсами. И в этом применении дифференциал Torsen превосходит вискомусту, потому что передаёт крутящий момент на колёса стабильно перед тем, как фактически начинается скольжение. Однако, если один набор колёс теряет сцепление с дорогой полностью, то дифференциал Torsen будет не в состоянии перенести крутящий момент на другой набор колёс из-за своей конструкции и принципа работы такого дифференциала.


Так выглядит современный дифференциал Torsen

Кстати, почти все автомобили Hummer используют дифференциал Torsen между передней и задней осями. При этом, руководство пользователя для Hummer предлагает новое решение проблемы, когда одно колесо полностью теряет сцепление с дорогой: нажимайте на педаль тормоза . Применяя тормоз, крутящий момент подаётся на колёса, которые находятся в воздухе, а затем переходят к колёсам, которые смогут вытащить автомобиль из "каши".

В случае с автомобилем, дифференциал отвечает за распределение момента между ведущими колесами, а также позволяет колесам вращаться с разной угловой скоростью при определенных условиях.

Читайте в этой статье

Где находится дифференциал в устройстве трансмиссии автомобиля, виды дифференциалов

Как известно, автомобили бывают переднеприводными, заднеприводными, а также полноприводными. Что касается места расположения дифференциала:

  • если привод реализован на передние колеса, дифференциал находится в самой ;
  • на заднеприводном авто дифференциал устанавливается в картере заднего моста;
  • в автомобилях с полным приводом для привода ведущих колес дифференциал стоит в картере переднего и заднего моста, а для привода ведущих мостов механизм устанавливается в раздаточной коробке (раздатке).

Также дифференциалы бывают межколсесными и межосевыми. Если дифференциал использован для привода ведущих колес, это межколесный дифференциал. Межосевой дифференциал располагается между ведущими мостами применительно к автомобилям с полным приводом.

Что касается устройства и особенностей конструкции, в основу дифференциала положен планетарный редуктор. С учетом типа зубчатой передач, которая применена в редукторе, дифференциал (редуктор) может быть: коническим, цилиндрическим, червячным. Теперь давайте рассмотрим устройство и принцип работы дифференциала более подробно.

Устройство дифференциала и принцип работы

Начнем с первого типа. Конический дифференциал зачастую выполнят функцию межколесного дифференциала. Цилиндрический дифференциал обычно встречается на полном приводе и ставится между осями. Червячный дифференциал универсален, что позволяет ставить механизм как между колесами, так и использовать в качестве межосевого.

При этом наиболее распространенным является конический дифференциал, а базовые элементы его конструкции активно используются и в устройстве других типов дифференциалов. По этой причине рассмотрим устройство и принцип работы конического дифференциала в качестве примера.

  • Итак, конический дифференциал, как уже было сказано выше, фактически является планетарным редуктором. В конструкцию включены полуосевые шестерни и сателлиты, которые находятся в корпусе (чашке дифференциала).

На корпус от главной передачи передается крутящий момент, затем через сателлиты происходит его передача на полуосевые шестерни. Также на корпусе крепится ведомая шестерня главной передачи (крепление жесткое). В корпусе установлены оси, на осях вращаются сателлиты.

Сами сателлиты, которые реализуют функцию планетарной шестерни, позволяют соединить корпус и полуосевые шестерни. С учетом того, какую величину крутящего момента нужно передать, в конструкцию дифференциала могут интегрировать 2 или 4 четыре сателлита.

Солнечные (полуосевые шестерни) осуществляют передачу крутящего момента на ведущие колеса автомобиля. Передача происходит через полуоси, соединение полуосевых шестерен и полуосей выполнено через шлицы.

Полуосевые шестерни бывают левыми и правыми, с одинаковым или разным количеством зубьев. Если число зубьев одинаковое, тогда это симметричный дифференциал, разное количество зубьев на левой и правой шестерне используется в устройстве несимметричных дифференциалов.

В первом случае симметричный дифференциал позволяет распределять крутящий момент по осям в равной степени, причем независимо от величины угловых скоростей ведущих колес.

Такой дифференциал используют для установки между колесами (симметричный межколесный дифференциал). Несимметричный дифференциал способен разделять крутящий момент в том или ином соотношении. Данная особенность позволяет использовать его между ведущими осями.

Теперь перейдем к принципам работы дифференциала. Прежде всего, симметричный дифференциал работает в трех основных режимах. Первый режим – движение по прямой, второй — движение в повороте, третий — езда по дорогое с плохим сцеплением (грязь, лед и т.д.).

Когда автомобиль движется прямо, колеса испытывают равнозначное сопротивление. Происходит передача крутящего момента от главной передачи на корпус дифференциала. Вместе с корпусом перемещаются сателлиты, которые, в свою очередь, осуществляют передачу момента на ведущие колеса.

С учетом того, что вращения сателлитов на осях не происходит, движение полуосевых шестерен осуществляется с равной угловой скоростью, частота вращения левой и правой шестерни равна частоте вращения ведомой шестерни главной передачи.

Однако если машина заходит в поворот, колесо, которое находится ближе к центру (внутреннее ведущее) нагружается сильнее и начинает испытывать большее сопротивление сравнительно с наружным колесом (дальним от центра поворота).

В результате роста нагрузки внутренняя полуосевая шестерня несколько замедляет вращение, а это приводит к тому, что сателлиты начинают вращаться вокруг своей оси. Такое вращение сателлитов приводит к увеличению частоты вращения наружной полуосевой шестерни.

  • На практике возможность движения ведущих колес с разными угловыми скоростями делает возможным прохода поворота без пробуксовок. Кстати, крутящий момент все равно распределяется на ведущие колеса равнозначно.

Если же автомобиль забуксовал в грязи, в снегу или на льду, одно колесо испытывает большее сопротивление, чем другое. В этом случае дифференциал (благодаря своей конструкции) инициирует ускоренное вращение буксующего колеса, тогда как другое колесо замедляется.

Однако недостаточная сцепка с покрытием не позволяет получить большой крутящий момент на буксующем колесе, а особенность работы симметричного дифференциала не позволит также развить нужный момент на другом колесе. Часто в этом случае машина попросту не может продолжить дальнейшее движение.

Выходом из ситуации становится необходимость увеличения крутящего момента на колесе, которое не буксует. Для этого дифференциал необходимо заблокировать. По этой причине внедорожники имеют дополнительную возможность блокировки дифференциала, тогда как легковые авто и даже некоторые современные бюджетные «паркетники» лишены такой функции.

Читайте также

Устройство и принцип работы механической коробки передач. Виды механических коробок (двухвальная, трехвальная), особенности, отличия

Являясь неразрывно связанными между собой, оба они уже несколько столетий активно используются при решении практически всех задач, которые возникали в процессе научно-технической деятельности человека.

Возникновение понятия о дифференциале

Впервые разъяснил, что такое дифференциал, один из создателей (наряду с Исааком Ньютоном) дифференциального исчисления знаменитый немецкий математик Готфрид Вильгельм Лейбниц. До этого математиками 17 ст. использовалось весьма нечеткое и расплывчатое представление о некоторой бесконечно малой «неделимой» части любой известной функции, представлявшей очень малую постоянную величину, но не равную нулю, меньше которой значения функции быть просто не могут. Отсюда был всего один шаг до введения представления о бесконечно малых приращениях аргументов функций и соответствующих им приращениях самих функций, выражаемых через производные последних. И этот шаг был сделан практически одновременно двумя вышеупомянутыми великими учеными.

Исходя из необходимости решения насущных практических задач механики, которые ставила перед наукой бурно развивающаяся промышленность и техника, Ньютон и Лейбниц создали общие способы нахождения скорости изменения функций (прежде всего применительно к механической скорости движения тела по известной траектории), что привело к введению таких понятий, как производная и дифференциал функции, а также нашли алгоритм решения обратной задачи, как по известной (переменной) скорости найти пройденный путь, что привело к появлению понятия интеграла.

В трудах Лейбница и Ньютона впервые появилось представление о том, что дифференциалы - это пропорциональные приращениям аргументов Δх основные части приращений функций Δу, которые могут быть с успехом применены для вычисления значений последних. Иначе говоря, ими было открыто, что приращение функции может быть в любой точке (внутри области ее определения) выражено через ее производную как Δу = y"(x) Δх + αΔх, где α Δх - остаточный член, стремящийся к нулю при Δх→0, гораздо быстрее, чем само Δх.

Согласно основоположникам матанализа, дифференциалы - это как раз и есть первые члены в выражениях приращений любых функций. Еще не обладая четко сформулированным понятием предела последовательностей, они интуитивно поняли, что величина дифференциала стремится к производной функции при Δх→0 - Δу/Δх→ y"(x).

В отличие от Ньютона, который был прежде всего физиком, и рассматривал математический аппарат как вспомогательный инструмент исследования физических задач, Лейбниц уделял большее внимание самому этому инструментарию, включая и систему наглядных и понятных обозначений математических величин. Именно он предложил общепринятые обозначения дифференциалов функции dy = y"(x)dx, аргумента dx и производной функции в виде их отношения y"(x) = dy/dx.

Современное определение

Что такое дифференциал с точки зрения современной математики? Он тесно связан с понятием приращения переменной величины. Если переменная y принимает сначала значение y = y 1 , а затем y = y 2 , то разность y 2 ─ y 1 называется приращением величины y.

Приращение может быть положительным. отрицательным и равным нулю. Слово «приращение» обозначается Δ, запись Δу (читается «дельта игрек») обозначает приращение величины y. так что Δу = y 2 ─ y 1 .

Если величину Δу произвольной функции y = f (x) возможно представить в виде Δу = A Δх + α, где у A нет зависимости от Δх, т. е. A = const при данном х, а слагаемое α при Δх→0 стремится к нему же еще быстрее, чем само Δх, тогда первый («главный») член, пропорциональный Δх, и является для y = f (x) дифференциалом, обозначаемымdy или df(x) (читается «дэ игрек», «дэ эф от икс»). Поэтому дифференциалы - это «главные» линейные относительно Δх составляющие приращений функций.

Механическое истолкование

Пусть s = f (t) - расстояние прямолинейно движущейся от начального положения (t - время пребывания в пути). Приращение Δs - это путь точки за интервал времени Δt, а дифференциал ds = f" (t) Δt - это путь, который точка прошла бы за то же время Δt, если бы она сохранила скорость f"(t), достигнутую к моменту t. При бесконечно малом Δt воображаемый путь ds отличается от истинного Δs на бесконечно малую величину, имеющую высший порядок относительно Δt. Если скорость в момент t не равна нулю, то ds дает приближенную величину малого смещения точки.

Геометрическая интерпретация

Пусть линия L является графиком y = f (x). Тогда Δ х= MQ, Δу = QM" (см. рисунок ниже). Касательная MN разбивает отрезок Δу на две части, QN и NM". Первая пропорциональна Δх и равна QN = MQ∙tg (угла QMN) = Δх f "(x), т. е QN есть дифференциал dy.

Вторая часть NM"дает разность Δу ─ dy, при Δх→0 длина NM" уменьшается еще быстрее, чем приращение аргумента, т.е у нее порядок малости выше, чем у Δх. В рассматриваемом случае, при f "(x) ≠ 0 (касательная не параллельна ОХ), отрезки QM"и QN эквивалентны; иными словами NM" уменьшается быстрее (порядок малости ее выше), чем полное приращение Δу = QM". Это видно на рисунке (с приближением M"к М отрезок NM"составляет все меньший процент отрезка QM").

Итак, графически дифференциал произвольной функции равен величине приращения ординаты ее касательной.

Производная и дифференциал

Коэффициент A в первом слагаемом выражения приращения функции равен величине ее производной f "(x). Таким образом, имеет место следующее соотношение - dy = f "(x)Δх, или же df (x) = f "(x)Δх.

Известно, что приращение независимого аргумента равно его дифференциалу Δх = dx. Соответственно, можно написать: f "(x) dx = dy.

Нахождение (иногда говорят, «решение») дифференциалов выполняется по тем же правилам, что и для производных. Перечень их приведен ниже.

Что более универсально: приращение аргумента или его дифференциал

Здесь необходимо сделать некоторые пояснения. Представление величиной f "(x)Δх дифференциала возможно при рассмотрении х в качестве аргумента. Но функция может быть сложной, в которой х может быть функцией некоторого аргумента t. Тогда представление дифференциала выражением f "(x)Δх, как правило, невозможно; кроме случая линейной зависимости х = at + b.

Что же касается формулы f "(x)dx= dy, то и в случае независимого аргумента х (тогда dx = Δх), и в случае параметрической зависимости х от t, она представляет дифференциал.

Например, выражение 2 x Δх представляет для y = x 2 ее дифференциал, когда х есть аргумент. Положим теперь х= t 2 и будем считать t аргументом. Тогда y = x 2 = t 4 .

Это выражение не пропорционально Δt и потому теперь 2xΔх не является дифференциалом. Его можно найти из уравнения y = x 2 = t 4 . Он оказывается равен dy=4t 3 Δt.

Если же взять выражение 2xdx, то оно представляет дифференциал y = x 2 при любом аргументе t. Действительно, при х= t 2 получим dx = 2tΔt.

Значит 2xdx = 2t 2 2tΔt = 4t 3 Δt, т. е. выражения дифференциалов, записанные через две разные переменные, совпали.

Замена приращений дифференциалами

Если f "(x) ≠ 0, то Δу и dy эквивалентны (при Δх→0); при f "(x) = 0 (что означает и dy = 0), они не эквивалентны.

Например, если y = x 2 , то Δу = (x + Δх) 2 ─ x 2 = 2xΔх + Δх 2 , а dy=2xΔх. Если х=3, то имеем Δу = 6Δх + Δх 2 и dy = 6Δх, которые эквивалентны вследствие Δх 2 →0, при х=0 величины Δу = Δх 2 и dy=0 не эквивалентны.

Этот факт, вместе с простой структурой дифференциала (т. е. линейности по отношению к Δх), часто используется в приближенных вычислениях, в предположении, что Δу ≈ dy для малых Δх. Найти дифференциал функции, как правило, легче, чем вычислить точное значение приращения.

Например, имеем металлический куб с ребром х=10,00 см. При нагревании ребро удлинилось на Δх = 0,001 см. Насколько увеличился объем V куба? Имеем V = х 2 , так что dV = 3x 2 Δх = 3∙10 2 ∙0/01 = 3 (см 3). Увеличение объема ΔV эквивалентно дифференциалу dV, так что ΔV = 3 см 3 . Полное вычисление дало бы ΔV =10,01 3 ─ 10 3 = 3,003001. Но в этом результате все цифры, кроме первой ненадежны; значит, все равно, нужно округлить его до 3 см 3 .

Очевидно, что такой подход является полезным, только если возможно оценить величину привносимой при этом ошибки.

Дифференциал функции: примеры

Попробуем найти дифференциал функции y = x 3 , не находя производной. Дадим аргументу приращение и определим Δу.

Δу = (Δх + x) 3 ─ x 3 = 3x 2 Δх + (3xΔх 2 + Δх 3).

Здесь коэффициент A= 3x 2 не зависит от Δх, так что первый член пропорционален Δх, другой же член 3xΔх 2 + Δх 3 при Δх→0 уменьшается быстрее, чем приращение аргумента. Стало быть, член 3x 2 Δх есть дифференциал y = x 3:

dy=3x 2 Δх=3x 2 dx или же d(x 3) = 3x 2 dx.

При этом d(x 3) / dx = 3x 2 .

Найдем теперь dy функции y = 1/x через ее производную. Тогда d(1/x) / dx = ─1/х 2 . Поэтому dy = ─ Δх/х 2 .

Дифференциалы основных алгебраических функций приведены ниже.

Приближенные вычисления с применением дифференциала

Вычислить функцию f (x), а также ее производную f "(x) при x=a часто нетрудно, а вот сделать то же самое в окрестности точки x=a бывает нелегко. Тогда на помощь приходит приближенное выражение

f(a + Δх) ≈ f "(a)Δх + f(a).

Оно дает приближенное значение функции при малых приращениях Δх через ее дифференциал f "(a)Δх.

Следовательно, данная формула дает приближенное выражение для функции в конечной точке некоторого участка длиной Δх в виде суммы ее значения в начальной точке этого участка (x=a) и дифференциала в той же начальной точке. Погрешность такого способа определения значения функции иллюстрирует рисунок ниже.

Однако известно и точное выражение значения функции для x=a+Δх, даваемое формулой конечных приращений (или, иначе, формулой Лагранжа)

f(a+ Δх) ≈ f "(ξ) Δх + f(a),

где точка x = a+ ξ находится на отрезке от x = a до x = a + Δх, хотя точное положение ее неизвестно. Точная формула позволяет оценивать погрешность приближенной формулы. Если же в формуле Лагранжа положить ξ = Δх /2, то хотя она и перестает быть точной, но дает, как правило, гораздо лучшее приближение, чем исходное выражение через дифференциал.

Оценка погрешности формул при помощи применения дифференциала

В принципе неточны, и привносят в данные измерений, соответствующие ошибки. Их характеризуют предельной или, короче, предельной погрешностью - положительным числом, заведомо превышающим эту ошибку по абсолютной величине (или в крайнем случае равным ей). Предельной называют частное от ее деления на абсолютное значение измеренной величины.

Пусть точная формула y= f (x) использована для вычисляения функции y, но значение x есть результат измерения и поэтому привносит в y ошибку. Тогда, чтобы найти предельную абсолютную погрешность │‌‌Δу│функции y, используют формулу

│‌‌Δу│≈│‌‌dy│=│ f "(x)││Δх│,

где │Δх│является предельной погрешностью аргумента. Величину │‌‌Δу│ следует округлить в сторону увеличения, т.к. неточной является сама замена вычисления приращения на вычисление дифференциала.



← Вернуться

×
Вступай в сообщество «auto-piter.ru»!
ВКонтакте:
Я уже подписан на сообщество «auto-piter.ru»