Что делает турбина в машине. Для чего нужна турбина в автомобиле и как она работает. Механизм газовой турбины

Подписаться
Вступай в сообщество «auto-piter.ru»!
ВКонтакте:
2946 Просмотров

Современные бензиновые двигатели обладают недюжинными мощностями. Этого удалось добиться благодаря тем технологиям, которые еще несколько десятков лет назад применялись лишь на гоночных машинах, а потом постепенно перекочевали и на серийные. Одной из таких технологий в двигателе является турбина, которая позволяет ему значительно увеличить мощность и все остальные характеристики. Сегодня мы расскажем о том, что такое турбина, каков принцип ее действия, а также какими плюсами и минусами обладает подобное техническое решение.

Преимущества и недостатки

Вообще говоря, турбины начали устанавливаться на двигателе достаточно давно. Когда на рынке стали появляться их первые модификации, принцип работы такого устройства был достаточно примитивен и понятен большинству людей, пусть даже и не профессиональных мастеров и ремонтников.

К сожалению, первые модели обладали большим числом недостатков. Расскажем об основных из них, которые можно было встретить на всех без исключения моделях турбин. Первый минус - это невысокий ресурс всех составных деталей. Действительно, ресурс был небольшим, и обуславливался он технологией работы, которая оказалась достаточно примитивной. Чаще всего из строя выходит подшипник, который, хоть и обильно обработан смазкой, не может подвергаться какому-либо осмотру и обслуживанию: турбина встраивается в корпус двигателя.

Вторая проблема - это возникновение провала при разгонах. Дело в том, что принцип работы устройства заключается в нагнетании большого давления воздуха в рабочие цилиндры мотора. Чтобы давление дошло до необходимого уровня, нужно определенное время: без применения специальной дорогостоящей электроники действия водителя предсказать достаточно проблематично. Поэтому при резком нажатии на газ происходит не разгон, а лишь нагнетание давления. В связи с этим водителю приходится выжидать по нескольку секунд, что, безусловно, является недостатком.

Правда, несмотря на примитивный и не самый удачный принцип работы, такое устройство, как турбина, широко устанавливалось на двигателе с момента своего изобретения. Это связано с тем, что плюсов, которые дает этот узел, куда больше, чем потенциальных недостатков. К явным преимуществам можно отнести, к примеру, то, что у мотора при равном объеме и конструкции мощность возрастает практически в два раза. При этом расход топлива остается на прежнем уровне, и машина становится даже несколько экономичнее.

Кроме того, ресурс самого двигателя значительно увеличивается. Это связано с тем, что турбина облегчает задачу двигателю и придает ему дополнительные силы. За счет этого механизмы подвергаются меньшему износу, и их срок службы возрастает в несколько раз.

Детальный взгляд

Технология работы турбины по-прежнему остается достаточно простой. Большинство технологий, которые применяются в современных ДВС, направлены на то, чтобы предотвратить всем известный провал при резких разгонах и увеличить срок службы маховика, скорость вращения которого достигает нескольких сотен тысяч оборотов в минуту.

Основным элементом, который и составляет основу принципа работы данного функционального узла, является крыльчатка, за счет которой и осуществляется вращение. Крыльчатка всегда встраивается в выпускной коллектор мотора - туда, где происходит циркуляция выхлопных газов под высоким давлением. Крыльчатка, которая встраивается в этот поток, начинает от него вращение, подобно тому, как функционирует ветряная мельница.

За счет этого крыльчатка обратной стороной начинает работать на нагнетание воздуха извне. Разумеется, этот воздух проходит систему фильтров и лишь после этого поступает в систему. Нетрудно предположить, что при столь высокой скорости вращения крыльчатки достигается недюжинное давление воздуха, который отправляется в цилиндры. Именно нагнетание большого давления, которое кратно нескольким барам, и является основой работы такого устройства, как турбина. Чем выше давление, тем выше и мощность, которую может развить двигатель, оснащенный наддувом.

Чтобы избежать каких-либо провалов мощности, производители прибегли к применению дополнительных систем, которые направлены на то, чтобы давление нагнеталось мгновенно. Одним из таких элементов являются клапаны.

Один из них соединяется с выпускным коллектором и переводит в него избыточное давление, которое уже не в состоянии раскрутить крыльчатку. Второй клапан соединяется с двигателя, и при его открытии давление мгновенно перетекает в камеры сгорания. За счет этого удается полностью нивелировать промежуток времени, направленный на нагнетание давления, и сократить время разгона и прироста мощности.

В этой статье мы ознакомимся с ответом на вопрос, что такое турбина. Здесь читатель найдет информацию о ее характеристике, видах и способах эксплуатации человеком, а также рассмотрим исторические сведенья, связанные с развитием этого механического устройства.

Введение

Что такое турбина и как она действует? Это лопаточная система (машина), которая занимается преобразованием энергий: внутренней и/или кинетической. Этот ресурс дает рабочее тело и позволяет выполнять валу его механическое предназначение. На лопатки оказывают воздействие посредством струи рабочего тела, что закрепляют около окружностей роторов. Она же приводит к их движению.

Может находить свое применение в качестве турбины электростанций (АЭС, ТЭС, ГЭС), фрагмента приводов для различного типа транспортов, а также может служить составной частью гидронасосов и газотурбинных двигателей. Настоящая энергетическая промышленность не способна обходиться без этих устройств. Вид теплопередачи вращения турбины на тепловых электростанциях, обладает высокой производительностью, он очень энергоемкий. Это позволяет человеку использовать различные ресурсы в относительно малых количествах, в сравнение с объемом получаемого электричества.

Исторические данные

Множество попыток создать устройство, схожее с современной турбиной, было совершено еще задолго до ее полноценного вида, приобретенного ею в конце девятнадцатого века. Первая попытка принадлежит Герону Александрийскому (1 век н.э.).

И. В. Линде утверждал, что именно в XIX веке была рождена масса планов и проектов, позволивших человеку превзойти «материальные трудности», мешающие выполнению и созданию такой техники. Главными событиями тех годов являлось развитие термодинамической науки, а также металлургической и машиностроительной отраслей. В конце XIX два ученых, по отдельности и независимо, смогли создать паровую турбину, пригодную в различных отраслях промышленности. Это были Густав Лаваль родом из Швеции и Чарлз Парсонс родом из Великобритании.

Хронологические данные событий

А теперь ознакомимся с некоторыми событиями, связанными с историей изобретения турбины :

  • В I в. н. э. паровую турбину попытался создать Герон Александрийский, однако несколько столетий после этого ее не изучали в силу ошибочного мнения о несостоятельности идеи.
  • В 1500 г. можно найти упоминание о «дымовом зонте» - приборе, поднимающем горячие потоки воздуха от пламени через лопасти, соединенные между собой и вращающие вертел.
  • Джованни Бранкой в 1629 г., было совершено создание турбины, лопатки которой поднимались за счет действия сильной струи пара.
  • В 1791 г., Джоном Барбером родом из Англии было приобретено право на владение патентом, который позволил ему стать первым обладателем и создателем современной газовой турбины.
  • Турбины, работающие на воде, впервые были созданы в 1832 г. французским ученым Бюрденом.
  • В 1894 г. была запатентована идея о корабле, который заставляла двигаться паровая турбина, а его обладателем стал Сэр Ч. Парсонс.
  • 1903 год: Эджидиус Эллинг из Норвегии сконструировал первую в своем роде турбинную систему на газе, которая смогла передавать больше энергии, чем затрачивать на внутреннее обслуживание компонентов самой турбины. Эта технология стала значительным прорывом тех времен. Проблемы обуславливались недостаточным уровнем развития термодинамических знаний, однако были преодолены.
  • В 1913 году Никола Тесла стал обладателем патента на турбину, работающую на основе эффекта пограничного слоя.
  • 1920 год: практическая теория протекания газового потока через каналы позволила сформулировать четкие данные для развития теоретического представления о процессе протекания, в котором газ движется вдоль аэродинамической плоскости. Эта работа была проделана доктором А. А. Грифицем.
  • Для самолета турбина реактивного движения была создана Сэром Ф. Уиттлом, а сам двигатель тестировали с успехом в апреле 1937 г.

Труды Густава Лаваля

Первым создателем турбины на пару стал Густав Лаваль, изобретатель родом из Швеции. Бытует мнение о том, что к конструированию такого механизма его привело желание обеспечить собственноручно сделанный сепаратор для молока механическим действием, выполняющимся без прямого вмешательства человеком. Двигатели тех времен не позволяли создавать необходимую скорость вращения.

Рабочим телом в машине Лаваля послужил пар. В 1889 году он сделал дополнение сопла турбин, на которые поставил конические расширители. Его труд стал инженерным прорывом, и это ясно, ведь анализ величины нагрузки, которую оказывали на рабочее колесо, показывает, что она была сверхсильной. Такое воздействие даже при малейшем нарушении привело бы к сбою в удержании центра тяжести и вызвало бы незамедлительное возникновение неполадок в работе подшипников. Избежать такой проблемы изобретатель смог при помощи использования тонкой оси, прогибающейся при вращении.

Чарлз Парсонс и его работа

Чарлзу Парсонсу был присвоен патент на изобретение первой многоступенчатой турбины, а сделал он это в 1884 году. Работа механизма приводила в действие устройство электрогенератора. Годом позже, в 1885-м, он модифицировал свою же версию, начавшую масштабно распространяться и применяться на электростанциях. Устройство обладало выравнивающим аппаратом, который образовывался из венцов, с лопатами турбины, которые направлялись в обратную сторону. Сами венцы оставались неподвижными. Механизм имел 3 ступени с разными показателями силы давления и геометрическими параметрами лопаток, а также путями их установления. Турбина использовала как активную, так и реактивную силу.

Устройство турбины

Теперь мы рассмотрим вопрос, что такое турбина, углубившись в механизм ее действия.

Турбинная ступень образуется при помощи двух главных частей:

  1. Рабочего колеса (лопатки на роторе, непосредственно создающие вращение);
  2. Соплового механизма (лопатки стартера, отвечающие за поворот рабочего тела, который придаст потоку нужный угол для атаки в отношении к рабочему колесу).

В зависимости от направления движения потоков рабочие тела можно разделить на аксиальные и радиальные турбинные механизмы. У первых поток р. т. движется по направлению вдоль турбинной оси. Радиальными называют турбины, у которых поток направляется перпендикулярно валовой оси.

Количество контуров позволяет разделять такие механизмы на одно-, двух- и трехконтурные. Иногда можно встретить турбины с четырьмя или пятью контурами, но это крайне редкое явление. Многоконтурное устройство турбины дает возможность пользоваться большими скачками в тепловых перепадах энтальпии. Это обуславливается размещением большого числа ступеней с разным давлением, а также влияет на мощность турбины.

В соответствии с количеством валов можно различать одно-, двух- и иногда трехвальные турбины. Они связываются общими параметрами тепловых явлений или механизмом редуктора. Валы могут располагаться коаксиально и параллельно.

Устройство и принцип действия турбины следующие: в местах, где происходит проход вала через стенки корпуса, располагаются утолщения, которые предупреждают утечку рабочего тела наружу и засасывание воздуха в корпус.

Передний конец вала оборудован предельным регулятором, который в случае необходимости автоматически остановит турбину. Это случается, например, в результате повышения показателя вращательной частоты, которая допустима для конкретного устройства.

Преобразование энергии газа

Что такое турбина? В общем виде - это машина, предназначение которой заключается в преобразовании энергии в работу. Их существует несколько видов, и одним из таких является газовая турбина.

Устройство газовой турбины основано на переводе энергетического потенциала газа в сжатом или нагретом состоянии в работу, которую выполняет механизм вала. Главные элементы - это ротор и статор. Свое применение находит в качестве детали газотурбинного двигателя, ГТУ и ПГУ.

Механизм газовой турбины

Работа турбины осуществляется, когда сопловой аппарат пропускает газы под давлением внутрь корпуса, в те места, где оно небольшое. При этом молекулы газа расширяются и ускоряются. Далее они попадают на поверхность рабочих лопаток и отдают им процент своего кинетического заряда энергии. Происходит сообщение крутящего момента лопаток.

Механическое устройство газовой турбины может быть гораздо проще, чем поршневого двигателя внутреннего сгорания. Современные турбореактивные двигатели могут обладать несколькими валами и сотнями лопаток как на стартере, так и на валу. Примером могут служить турбины самолетов. Их характеристикой также является наличие сложной системы расположения трубопровода, теплообменников и камер, предназначенных для сгорания.

Подшипники как радиального, так и упорного типа служат критическим элементом в этой разработке. Традиционно применялись гидродинамические или охлаждаемые маслом шарикообразные подшипники, однако в скором времени их обошли воздушные. По сей день их применяют для создания микротурбин.

Тепловые двигатели

Тепловая турбина преобразовывает работу, выполняемую паром, в механическую. Внутри лопаточного аппарата происходит превращение потенциальной энергии пара в нагретом и сжатом состоянии в кинетическую форму. Последняя, в свою очередь, преобразуется в механическую и обуславливает вращение вала.

Поступление пара происходит посредством парокотельного устройства и направляется на каждую криволинейную лопатку, закрепленную по окружности ротора. Далее пар воздействует на нее, и все вместе лопатки заставляют ротор вращаться. Турбина на пару является элементом ПТУ. Турбоагрегат образуется при помощи совмещения работы паровой турбины и электрогенератора.

Основная часть парового двигателя

Паровые механизмы образуются, так же, как и газовые, при помощи ротора и статора. На первом закрепляются способные к движению лопатки, а на последнем - не способные.

Движение потока протекает в соответствии с аксиальной или радиальной формой, что зависит от типа направления потоков пара. Аксиальная форма характеризуется перемещением пара периметра оси, котором обладает турбина. Радиальная турбина обладает потоками паров, которые двигаются перпендикулярно. При этом лопатки располагают параллельно к оси, по которой происходит вращение. Могут иметь от одного до пяти цилиндров. Число валов также может варьироваться. Существуют устройства, располагающие одним, двумя или тремя валами.

Корпус - это неподвижная часть, которую именуют статором. Он обладает рядом выточек, в которые устанавливаются диафрагмы, с соответствующими плоскости разъема турбинного корпуса разъемами. По их периферии размещают ряд сопловых каналов (решеток), которые образуются посредством криволинейных лопаток, залитых в диафрагму или приваренных к ней.

Турбокомпрессор

Существует механизм, который использует отработавшую часть газов с целью увеличения показателя давления в пространстве впускной камеры. Такой агрегат называют турбокомпрессором.

Основные части представлены доцентровым или осевым компрессором и газовой турбиной, необходимой для приведения его в действие. Обладает одним валом. Главная функция заключается в повышении давления, оказываемого рабочим телом. Это становится возможным в силу нагревания газотурбинного двигателя работой самого компрессора, приобретающего мощность благодаря турбине.

В заключение

Теперь читатель располагает общими представлениями об устройстве, принципе работы, механизме действия, способах эксплуатации турбин. Здесь также были рассмотрены конкретные виды турбин, отличающиеся видом рабочего тела, и исторические сведенья, показывающие общий ход развития данных механизмов. Подведя итоги, можно сказать, что турбины - это устройства, преобразовывающие энергию. Попытки их создания были совершены еще задолго до нашей эры. В настоящее время они широко используются человеком в различных отраслях промышленности, что значительно упрощает процесс работы, усиливает производительность и позволяет совершать механические действия, ранее недоступные человечеству.

Зачем автомобилю турбина и каковы ее преимущества? Где находится турбина

Где Находится Турбина В Машине ~ VIVAUTO.RU

Где находится турбина в машине

Последние доставленные авто

Главные механизмы работы турбо мотора.

Как понятно, мощность мотора пропорциональна количеству топливо-воздушной консистенции попадающей в цилиндры. При иных равных, движок большего объема пропустит через себя больше воздуха и, соответственно, выдаст больше мощности, чем движок наименьшего объема.

Если нам требуется что бы небольшой движок выдавал мощности как большой либо мы просто желаем что бы большой выдавал еще более мощности, нашей основной задачей станет поместить больше воздуха в цилиндры этого мотора.

Естественно, мы можем доработать головку блока и установить спортивные распредвалы, увеличив продувку и количество воздуха в цилиндрах на больших оборотах. Масло в КПП Лада Гранта поэтому лучше поменять, Где находится щуп масла в коробке. - Из турбокомпрессора воздух поступает в интеркулер (3) где находится турбина еще. Где находится турбина в машине. Добрый вечер!!! Подскажите пожалуйста где находится датчик коленвала в Пежо 308 ,2009 год выпуска дизель!? Мы даже можем бросить количество воздуха прежним, но поднять степень сжатия нашего мотора и перейти на более высочайший октан горючего, тем подняв КПД системы. Убьёшь турбину*crazy* Не мешай машине ездить, у меня турбина в Там где в нее. Все эти методы результативны и работают в случае когда требуемое повышение мощности составляет 10-20%. Где находится кран отопителя? Перед тем, как поменять кран отопительной системы, давайте разберемся в том, где находится этот элемент и зачем он нужен. Где находится фильтр? Решив своими руками заменить грязный топливный фильтр в машине. Но когда нам необходимо кардинально поменять мощность мотора - самым действенным способом будет внедрение турбокомпрессора.

Каким же образом турбокомпрессор дозволит нам получить больше воздуха в цилиндрах нашего мотора? Давайте взглянем на приведенную ниже диаграмму:

Что такое турбина (Простыми словами)

Вконтакте: YouTube: Instagram: Би-Ноль: .

Как работает турбина на автомобиле 2014

Как работает турбина на авто turbina-na-avto/ подробнее читайте тут!

Снутри турбокомпрессора вошедший воздух сжимается и при всем этом возрастает количество кислорода в единице объема воздуха. Где находится турбина в машине. Преимущества и недостатки турбокомпрессоров. Для тех, кто не знает, где находится турбина в машине, нужно понимать, что она встроена в двигатель. Где находится кран печки в ZAZ Chance 2010 года. Побочным эффектом хоть какого процесса сжатия воздуха является его нагрев, что несколько понижает его плотность.

Из турбокомпрессора воздух поступает в интеркулер (3) где охлаждается и в основной мере восстанавливает свою температуру, что не считая роста плотности воздуха ведет к тому же к наименьшей склонности к детонации нашей будущей топливо-воздушной консистенции.

После прохождения интеркулера воздух проходит через дросеель, попадает во впускной коллектор (4) и далее на такте впуска - в цилиндры нашего мотора.

Объем цилиндра является фиксированной величиной, обусловленной его поперечником и ходом поршня, но потому что сейчас он заполняется сжатым турбокомпрессором воздухом, количество кислорода зашедшее в цилиндр становится существенно больше чем в случае с атмосферным мотором. Большее количество кислорода позволяет спалить большее количество горючего за такт, а сгорание большего количества горючего ведет к повышению мощности выдаваемой движком.

После того как топливо-воздушная смесь сгорела в цилиндре, она на такте выпуска уходит в выпускной коллекторе (5) где этот поток жаркого (температура 700С-1100С) газа попадает в турбину (6)

Проходя через турбину поток выхлопных газов крутит вал турбины на другой стороне которого находится компрессор и тем совершает работу по сжатию очередной порции воздуха. Может быть турбина и в порядке, У меня пробег на машине свыше 200 000 И где это на. При всем этом происходит падение давления и температуры выхлопного газа, так как часть его энергии ушла на обеспечение работу компрессора через вал турбины.

Если машина не набирает мощность, как она должна то стоит задуматься чтоб проверить работу турбины на Вашем автомобиле.

Источник

vivauto.ru

Как работает турбина в автомобиле

Основные принципы работы турбо двигателя.

Как известно, мощность двигателя пропорциональна количеству топливо-воздушной смеси попадающей в цилиндры. При прочих равных, двигатель большего объема пропустит через себя больше воздуха и, соответственно, выдаст больше мощности, чем двигатель меньшего объема.

Если нам требуется что бы маленький двигатель выдавал мощности как большой или мы просто хотим что бы большой выдавал еще больше мощности, нашей основной задачей станет поместить больше воздуха в цилиндры этого двигателя.

Естественно, мы можем доработать головку блока и установить спортивные распредвалы, увеличив продувку и количество воздуха в цилиндрах на высоких оборотах. Мы даже можем оставить количество воздуха прежним, но поднять степень сжатия нашего мотора и перейти на более высокий октан топлива, тем самым подняв КПД системы. Все эти способы действенны и работают в случае когда требуемое увеличение мощности составляет 10-20%. Но когда нам нужно кардинально изменить мощность мотора - самым эффективным методом будет использование турбокомпрессора.

Каким же образом турбокомпрессор позволит нам получить больше воздуха в цилиндрах нашего мотора? Давайте взглянем на приведенную ниже диаграмму:

Рассмотрим основные этапы прохождения воздуха в двигателе с турбокомпрессором.

Воздух проходит через воздушный фильтр (не показан на схеме) и попадает на вход турбокомпрессора (1)

Внутри турбокомпрессора вошедший воздух сжимается и при этом увеличивается количество кислорода в единице объема воздуха. Побочным эффектом любого процесса сжатия воздуха является его нагрев, что несколько снижает его плотность.

Из турбокомпрессора воздух поступает в интеркулер (3) где охлаждается и в основной мере восстанавливает свою температуру, что кроме увеличения плотности воздуха ведет еще и к меньшей склонности к детонации нашей будущей топливо-воздушной смеси.

После прохождения интеркулера воздух проходит через дросеель, попадает во впускной коллектор (4) и дальше на такте впуска - в цилиндры нашего двигателя.

Объем цилиндра является фиксированной величиной, обусловленной его диаметром и ходом поршня, но так как теперь он заполняется сжатым турбокомпрессором воздухом, количество кислорода зашедшее в цилиндр становится значительно больше чем в случае с атмосферным мотором. Большее количество кислорода позволяет сжечь большее количество топлива за такт, а сгорание большего количества топлива ведет к увеличению мощности выдаваемой двигателем.

После того как топливо-воздушная смесь сгорела в цилиндре, она на такте выпуска уходит в выпускной коллекторе (5) где этот поток горячего (температура 700С-1100С) газа попадает в турбину (6)

Проходя через турбину поток выхлопных газов вращает вал турбины на другой стороне которого находится компрессор и тем самым совершает работу по сжатию очередной порции воздуха. При этом происходит падение давления и температуры выхлопного газа, поскольку часть его энергии ушла на обеспечение работу компрессора через вал турбины.

Если машина не набирает мощность, как она должна то стоит задуматься чтобы проверить работу турбины на Вашем автомобиле.

remontauto.by

Что такое турбина и как она работает?: МашиноМания

Примите во внимание два фактора. Во-первых, турбина может вращаться со скоростью 200 000 оборот за минуту. Во-вторых, температура газа может достигнуть 1000 градусов. Это означает, что очень непросто создать такой трубнаддув, который будет в состоянии вынести подобные нагрузки.

Именно из-за этого турбонаддувом широко пользовались лишь во время Второй мировой - и то в основном в авиации. Лишь в 50-ых годах компания Caterpillar приспособила этот инструмент для тракторов, а Cummins удалось сконструировать первые грузовые турбодизели. В легковых автомобилях их стали использовать несколько позже, в 1962 году. Недостатки конструкции не ограничены ее сложностью и дороговизной. То, насколько эффективно работает турбина, напрямую зависит от того, как оборачивается двигатель. Для малых оборотов характерно малое количество выхлопных газов, из-за чего компрессор практически не нагоняет дополнительного воздуха. Это приводит к тому, что он практически бездействует на мощностях до 3 тысяч оборотов, а после 4-5 - выстреливает. Такая ситуация называется турбоямой. Характерно то, что чем большего размера турбина, тем больше времени уйдет на раскрутку. Из-за этого двигатель с турбиной высокого давления будет существенно страдать в этой ситуации. Турбины с давлением пониже такой проблемой не страдают, но и мощности практически не поднимают. Решить проблему турбоямы можно при помощи последовательного наддува, при котором во время работы на малых оборотах запускают малоинерционные турбокомпрессоры, которые увеличивают тягу сначала. Вторые включаются со временем, когда давление на выпуске растёт. Рядные двигатели часто используют одиночные турбокомпрессоры в паре. При этом, каждую улитку наполняют выхлопные газы из разных цилиндров. Однако газы подаются на одну турбину, что позволяет эффективно раскручивать ее не только на больших, но и на малых оборотах. Впрочем, чаще всего по-прежнему используют пару одинаковых компрессоров, которые обслуживают разные группы цилиндров, что является типичной схемой для V-моторов. Так становится возможным получать выхлопной газ из блоков, которые работают в противофазе. Чтобы компрессор работал более эффективно на всех оборотах, необходимо изменить геометрию рабочих частей. Лопатки поворачиваются, как и изменяется форма сопла, в зависимости от того, каковы обороты. Таким образом, можно получить супертурбину, которая сможет работать во всём диапазоне. Несмотря на то, что эти идеи уже довольно давно витают в воздухе, их удалось воплотить в жизнь лишь недавно. Первым автомобилем, который реализовал ее, стал Porsche 911 Turbo.

Изменяемая геометрия турбины

Конструкция уже давным-давно усовершенствована, а ее популярность продолжает возрастать. Турбокомпрессоры стали эффективными не только с точки зрения форсирования мотора, а и для экономичности двигателя. Очень многие дизели сейчас снабжены приставкой "турбо", а это означает, что даже самый обычный, на первый взгляд, автомобиль, может оказаться настоящей "зажигалкой". Распознать её можно благодаря тому самому неприметному значку.

Источник: automenu.com.ua

www.mashinomania.ru

Зачем автомобилю турбина и каковы ее преимущества?

Для чего и в каких случаях требуется турбина?

На мощностные характеристики, которые демонстрирует автомобиль, непосредственно влияет показатель наполнения цилиндров воздушно-топливной смеси. В целях увеличения степени обогащения этой смеси компании-производители оборудуют транспортные средства турбокомпрессорами. Вместе с тем, далеко не каждая модель и модификация той или иной марки автомобиля имеет под капотом турбированный мотор. Это первая причина, по которой владельцы устанавливают турбину на авто. Кроме того, турбонагнетатель имеет свойство со временем изнашиваться. В этом случае нужна замена турбины.

В чем преимущества турбин на автомобиле?

Турбированный силовой агрегат приобретает все большую популярность, и для этого есть множество причин, поскольку перечень преимуществ турбонагнетателя весьма обширен. Привлекательность турбины состоит в следующем:

  • значительное увеличение мощности транспортного средства;
  • существенное снижение топливного расхода;
  • быстрая окупаемость турбины, что зависит от частоты использования автомобиля;
  • экономия, поскольку имеющийся в машине двигатель не требуется менять на более мощную версию, что достаточно дорого;
  • стабильность функционирования двигателя;
  • экологичность - у авто с турбированным двигателем наблюдается меньшая степень токсичности выхлопных газов.
Как правильно выбрать турбину?

Турбина и двигатель должны функционировать сбалансировано, и каждый тип мотора требует определенной турбины. Разумеется, лучше всего приобретать оригинальный турбонаддув, в этом случае производитель учитывает все особенности двигателей своих же автомобилей и выпускает турбины под конкретные силовые агрегаты, которые идеально им подходят. Поскольку такие турбины стоят недешево, стоит обратить внимание на неоригинальные модели, но выпускаемые известными изготовителями, имеющими лицензии на такое производство. В этом случае турбины на каждом этапе производства проходят тщательное тестирование.

Каковы критерии выбора?

При выборе турбины следует определиться с тремя основными факторами:

Зачем автомобилю турбина и каковы ее преимущества? Видео

howcarworks.ru

Всё большее количество производителей автомобилей устанавливают турбину или турбокомпрессор. Популярность этого агрегата в последнее время значительно возросла. Но чем обусловлен столь высокий интерес производителей машин к установке турбин?

Для чего используется турбина в автомобиле?

Турбина представляет собой технически сложный агрегат, позволяющий существенно увеличить мощность мотора машины даже с небольшим объёмом двигателя. Сегодня все производители автомобилей озадачились снижением расхода топлива ввиду его значительного подорожания.

Но установка мотора малой мощности на машину среднего и премиум диапазона со значительной массой способна превратить езду в настоящее мучение. Удовольствие от поездок на маломощном автомобиле будет сомнительным. Именно турбина своим появлением позволила решить проблему повышения мощности мотора без увеличения его объёма.

Как работает турбина?

Турбина нагнетает большое количество воздуха в цилиндры двигателя машины. Всё это даёт возможность получить обогащённую воздушно-топливную смесь, значительно увеличивающую мощность мотора. После нажатия на педаль газа автомобиль словно получает невидимый «пинок» значительно ускоряясь. Именно так работает агрегат.

С одинаковой эффективностью турбина может использоваться как на дизельном, так и бензиновом моторе. Конструктивно турбокомпрессор и двигатель транспортного средства представляют собой единое целое. Принцип работы агрегата достаточно простой. Именно поэтому ресурс эксплуатации турбины одинаков с ресурсом мотора машины при условии правильной эксплуатации и своевременного ухода.

Основные причины выхода из строя турбины?

Причины выхода из строя автомобильных турбин могут быть различные и зависят от одного или совокупности факторов:

Турбокомпрессор автомобиля достаточно требователен к уходу и нуждается в правильной эксплуатации. Необходимо помнить, что ремонт турбины достаточно дорогое удовольствие.

Как можно определить выход из строя турбины?

Опытные водители достаточно просто могут определить неисправность турбины автомобиля. Но зачастую подобная диагностика не может установить, что именно привело к поломке агрегата.

Среди основных признаков неисправности турбокомпрессора можно выделить следующие:

  • появление неприятного свиста под капотом машины при разгоне;
  • значительные подтеки масла в районе установки турбины или интеркулера;
  • включение значка неисправности двигателя на панели приборов;
  • значительное снижение мощности мотора.

При выявлении вышеперечисленных признаков необходимо как можно быстрее обратиться за помощью к специалистам. Они, используя специальное оборудование, смогут установить причину выхода из строя турбокомпрессора. Сегодня необязательно приобретать новую турбину можно провести капитальный ремонт неисправного агрегата.

Спасибо за внимание, удачи вам на дорогах.

www.avtogide.ru

Для чего нужна турбина в автомобиле, машине, видео

На вырабатываемую автомобилем мощность оказывает непосредственное влияние степень наполнения его цилиндров топливно-воздушной смеси. Чтобы увеличить уровень обогащения указанной смеси, производители автомобилей устанавливают на них дополнительные нагнетатели или турбокомпрессоры.

Популярность турбин на автомобиле

Среди автолюбителей турбированный двигатели в машине становится все более популярным. Привлекательность такого вида двигателей стала возможной за счет следующих факторов:


Взвесив вышеуказанные плюсы, автолюбители стремятся приобретать машины, на которых производителем уже установлен турбированный двигатель, либо самостоятельно монтировать турбину на имеющемся автомобиле. Помимо повышения мощности, турбина позволит сэкономить деньги автолюбителя.

golifehack.ru

Турбонаддув - история изобретения и принцип работы

Под турбонаддувом принято понимать метод, основанный на агрегатном наддуве, который подразумевает использование отработанных газов в качестве источника энергии. При этом главным компонентом системы можно считать турбокомпрессор, а в некоторых случаях турбонагнетатель, оснащенный механическим приводом.

Экскурс в историю

Турбокомпрессоры стали известны в то время, когда создавались первые образцы тепловых двигателей, где энергия топлива преобразовывалась в механическую работу (ДВС). В период с 1885 по 1896 г. Рудольф Дизель вместе с Готлибом Даймлером проводил исследования, направленные на увеличение мощности, а также снижения затрат топлива, посредством сжатия воздуха, который нагнетался непосредственно в камеру сгорания.

При этом в 1905 г. произошло важное событие, обусловленное деятельностью инженера Альфреда Бюхи, который смог достичь глобального увеличения мощности (120%) с помощью процесса нагнетания выхлопных газов. Спустя шесть лет Бюхи получил патент, закрепивший метод турбонаддува.

Изначально турбокомпрессоры применяли в двигателях, отличавшихся серьезными размерами, например, устанавливаемые на кораблях. Что касается авиации, то турбокомпрессоры нашли свое применение еще на заре военного авиастроения, когда ими оснащались двигатели Рено, предназначенные для установки на истребителях. В дальнейшем развитие авиационных турбонагнетателей шло форсированными темпами. Так, в 1938 г. американцы оснастили турбонагнетателями двигатели истребителей и бомбардировщиков, а в 1941 г. был предложен проект истребителя P-47, имевший в своем составе турбонагнетатель, который значительно улучшал летные характеристики.

В свою очередь, автомобильная промышленность впервые стала эксплуатировать турбокомпрессоры на грузовых автомобилях. Значительно позже получили массовое распространение турбины, предназначенные для легковых автомобилей. На американский рынок уже в начале шестидесятых годов поступили две модели с турбодвигателями, которые достаточно быстро исчезли, так как наряду с техническими преимуществами уровень надежности был минимален.

Спустя десятилетие, турбодвигатели стали неотъемлемой частью автомобилей Formula 1, что сказалось на росте популярности турбокомпрессоров. Именно с этого времени приставка «турбо» вошла в обиход и стала модной. В основной своей массе производители автомобилей этого периода старались предложить на рынок хотя бы одну модель, оснащенную бензиновым турбодвигателем. Подобное положение вещей продолжалось относительно недолго, так как мода на турбодвигатели пошла на спад. В большей мере это связано с тем, что турбокомпрессор наряду с увеличением мощности также значительно увеличивал и расход топлива.

Реинкарнацией турбокомпрессора можно считать 1977 г., когда в массовое производство поступил Saab 99 Turbo. Через год на рынке появился Mercedes-Benz 300 SD, который стал первым автомобилем с турбодвигателем на дизельной основе. Затем последовала модель VW Turbodiesel, где турбокомпрессор увеличивал эффективность дизельного двигателя до планки бензинового агрегата, а потребление топлива значительно снижалось.

В принципе, дизельные двигатели отличаются высокой степенью сжатия, что соотносится с адиабатным расширением на рабочем ходе и предполагает более низкую температуру выхлопных газов. Это обстоятельство позволяет не выдвигать к жаропрочности турбины жесткие требования, что дает возможность удешевить конструкцию силового агрегата в целом. Данное условие объясняет тот факт, что турбины в основном устанавливают на дизельных двигателях, а не бензиновых.

Принцип работы турбонаддува

Основа турбонаддува – это обуздание энергии, которая создается с помощью отработавших газов. Крыльчатка турбины, закрепленная на валу, оказывается в области воздействия выхлопных газов, что приводит к ее раскручиванию совместно с лопастями компрессора, служащего для нагнетания воздуха в цилиндры двигателя. В этом случае создаются условия, когда двигатель получает более значительный объем воздуха, смешанный с топливом. Это достигается благодаря тому, что воздух поступает в цилиндры под давлением, то есть принудительно, и в меньшей мере за счет разрежения, которое создается поршнем.

В основном турбодвигатели отличаются минимальным эффективным расходом топлива (г/(кВт·ч)), что соотносится с высокой литровой мощностью (кВт/л). При этом данные характеристики оказывают влияние на увеличение мощности мотора без повышения оборотов силового агрегата.

В связи с тем, что происходит значительное увеличение массы воздуха, которая подвергается сжатию в цилиндрах, происходит рост температуры, а это может послужить причиной детонации. Чтобы этого избежать, предусмотрены конструктивные особенности турбодвигателей, основанные на: уменьшении степени сжатия, применении высокооктановых марок топлива и использовании интеркулера, являющегося промежуточным охладителем наддувочного воздуха. Также для поддержания эффективности всей системы используется уменьшение температуры воздуха, что обусловливается необходимостью сохранения его параметра плотности в нужном значении, так как происходит нагрев воздуха от сжатия.

Элементы системы

  • Турбокомпрессор и интеркулер.
  • Регулировочный клапан, предназначенный для контроля давления.
  • Перепускной клапан, служащий для перемещения наддувочного воздуха во впускные патрубки и далее до турбины в том случае, если дроссельная заслонка закрыта.
  • Стравливающий клапан, применяемый при отсутствии датчика, контролирующего массовый расход топлива. Его предназначение – это сброс наддувочного воздуха в окружающую среду.
  • Выпускной коллектор, отличающийся совместимостью с турбокомпрессором.
  • Герметичные патрубки, подразделяющиеся на воздушные и масляные. Первые осуществляют подачу воздуха во впуск, а вторые – смазку и охлаждение турбокомпрессора.

Всё большее количество производителей автомобилей устанавливают турбину или турбокомпрессор. Популярность этого агрегата в последнее время значительно возросла. Но чем обусловлен столь высокий интерес производителей машин к установке турбин?

Турбина представляет собой технически сложный агрегат, позволяющий существенно увеличить мощность мотора машины даже с небольшим объёмом двигателя. Сегодня все производители автомобилей озадачились ввиду его значительного подорожания.

Но установка мотора малой мощности на машину среднего и премиум диапазона со значительной массой способна превратить езду в настоящее мучение. Удовольствие от поездок на маломощном автомобиле будет сомнительным. Именно турбина своим появлением позволила решить проблему повышения мощности мотора без увеличения его объёма.

Как работает турбина?

Турбина нагнетает большое количество воздуха в цилиндры двигателя машины. Всё это даёт возможность получить обогащённую воздушно-топливную смесь, значительно увеличивающую мощность мотора. После нажатия на педаль газа автомобиль словно получает невидимый «пинок» значительно ускоряясь. Именно так работает агрегат.

С одинаковой эффективностью турбина может использоваться как на дизельном, так и бензиновом моторе. Конструктивно турбокомпрессор и двигатель транспортного средства представляют собой единое целое. Принцип работы агрегата достаточно простой. Именно поэтому ресурс эксплуатации турбины одинаков с ресурсом мотора машины при условии правильной эксплуатации и своевременного ухода.

Основные причины выхода из строя турбины?

Причины выхода из строя автомобильных турбин могут быть различные и зависят от одного или совокупности факторов:

  • механическое повреждение корпуса или крыльчатки;
  • люфт крыльчатки;
  • недостаточный уровень моторного масла;
  • коррозийные процессы;
  • неправильная установка турбины;
  • редкая замена моторного масла.

Турбокомпрессор автомобиля достаточно требователен к уходу и нуждается в правильной эксплуатации. Необходимо помнить, что ремонт турбины достаточно дорогое удовольствие.

Как можно определить выход из строя турбины?

Опытные водители достаточно просто могут определить неисправность турбины автомобиля. Но зачастую подобная диагностика не может установить, что именно привело к поломке агрегата.

Среди основных признаков неисправности турбокомпрессора можно выделить следующие:

  • появление неприятного свиста под капотом машины при разгоне;
  • значительные в районе установки турбины или ;
  • включение значка неисправности двигателя на панели приборов;
  • значительное снижение мощности мотора.

При выявлении вышеперечисленных признаков необходимо как можно быстрее обратиться за помощью к специалистам. Они, используя специальное оборудование, смогут установить причину выхода из строя турбокомпрессора. Сегодня необязательно приобретать новую турбину можно провести капитальный ремонт неисправного агрегата.

Спасибо за внимание, удачи вам на дорогах.

Здравствуйте, уважаемые читатели и посетители блога Автогид.ру. Сегодня в статье мы с вами разберёмся и узнаем как работает турбина на бензиновом двигателе. Тема, конечно интересная и в первую очередь для владельцев бензиновых турбированных автомобилей. Зачастую информации о принципе работы и устройстве турбины на бензиновом моторе достаточно мало или она слишком сложна для восприятия обыкновенного человека.

Использование турбины позволяет любому двигателю с малым объёмом увеличить мощность без возрастания расхода топлива и сокращения ресурса эксплуатации. После подключения турбины мотор словно получает невидимый пинок и работает значительно шустрее. Существуют особенности использования бензиновых моторов, оснащённых турбинами.

Их необходимо учитывать для продления срока службы устройства и использования двигателя машины с максимальной эффективностью. Перед тем как говорить о принципе работы турбины на бензиновом двигателе надо узнать историю её появления и широкого использования производителями автомобилей.

История появления турбированного бензинового мотора

Первые двигатели внутреннего сгорания, как и все технические первопроходцы имели очень «сырой» вид и требовали доработки. Время шло и на рынке появлялись надёжные и долговечные модели бензиновых моторов, которые радовали водителей своей неприхотливостью в обслуживании и выносливостью. Требования к моторам среди потребителей возрастали и критерии контролирующих органов ужесточались.

Первоначально развитие бензиновых моторов осуществлялось во многом по экстенсивному пути. Для увеличения мощность двигателя его объём просто увеличивался. Все было отлично если бы не возрастающий пропорционально расход топлива и количество вредных выбросов в окружающую среду. Продолжаться это больше так не могло и перед инженерами и создателями двигателей внутреннего сгорания была поставлена очень непростая задача.

Добиться увеличения мощность ДВС (двигателя внутреннего сгорания) без увеличения объёма мотора и расхода топлива. Решений было предложено большое количество, но выбрано было единственное верное направление развития моторов. Было решено работать над увеличением эффективности образования и сгорания топливно-воздушной смеси в моторе автомобиля.

Единственный верный способ увеличить эффективность сгорания смеси топлива и воздуха – это увеличить поступление воздуха в цилиндры мотора. При этом дополнительный объём воздуха должен был поступать принудительно за счёт создаваемого давления.

Дополнительное количество воздуха значительно усиливало сгорание топлива в цилиндрах мотора и тем самым высвобождая дополнительные мощности при неизменном объёме. Идея простая, но требующая реализации в виде появления устройства для нагнетания воздуха в цилиндры двигателя.

Для решения этой задачи автомобильные инженеры решили опираться на разработки авиационной промышленности. Она уже очень давно использовала турбины. Первые турбированные бензиновые моторы появились на грузовых автомобилях в тридцатых годах прошлого века. Грузовики использующие турбины прибавили в мощности и оптимизировали расход топлива.

Удачный опыт использования турбины как устройства для нагнетания массы воздуха в грузовых машинах подвиг конструкторов и инженеров автомобильной промышленности ускорить движение в этом направлении. Первые автомобили с бензиновыми моторами оснащёнными турбинами начали продаваться на территории США в 60-х годах прошлого века.

Первые модели автомобилей этого типа автолюбители из США встретили настороженно и с подозрительностью. Только через 10 лет в 70-х годах прошлого века их оценили по достоинству и начали активно использовать при создании машин со спортивным уклоном. На серийные модели автомобилей турбины устанавливали в очень малом количестве.

Это было вызвано тем, что первые модели моторов с турбинами оказались очень «прожорливыми» и имели массу прочих мелких недоработок, портящих первое впечатление. Значительный расход топлива не дал возможность наладить широкое производство машин с турбированным моторами. Значительно замедлило внедрение турбин в моторы нефтяной кризис, закончившийся увеличением цен на топливо. Люди стали больше экономить.

Лишь в конце 90-х годов после значительного улучшения конструкции турбины и бензинового мотора в целом удалось изменить ситуацию. Это стало отправной точкой начала эры развития и становления бензиновых турбированных двигателей.


Турбина бензинового мотора за счёт использования компрессора принудительно нагнетает в цилиндры массу воздуха. Значительно повышается обогащение кислородом топливно-воздушной смеси и улучшается сгораемость бензина. Коэффициент полезного действия существенно возрастает. Эффективность работы мотора увеличивается при неизменно объёме.

Мощность двигателя при использовании турбины возрастает прямо пропорционально количеству сжигаемого за единицу времени бензина. Для обеспечения максимального быстрого сгорания топлива в цилиндрах мотора необходим значительный объём воздуха. Именно его в достаточном количестве направляет турбина за счёт работы компрессора. Он принудительно подаётся в цилиндры, обогащая топливно-воздушную смесь.

Если разрезать турбину бензинового мотора вдоль корпуса можно увидеть следующее рабочие элементы:

Корпус подшипников.

Служит для размещения ротора, представленного валом несущим на себе турбинные и компрессорные кольца, оборудованные лопастями. Именно они при вращении захватывают воздуха и направляют его в цилиндры мотора.

Масляные каналы.

Пронизывают корпус турбины словно кровеносные сосуды на теле человека. Служат для своевременной доставки моторного масла к трущимся и вращающимся элементам. Снижают тем самым износ рабочих элементов бензиновой турбины.

Подшипник скольжения.

Его главная задача обеспечить свободное и плавное вращение ротора турбины с его лопастями для захвата достаточного количества воздуха. Его смазку и охлаждение обеспечивает циркулирующее в турбине моторное масло.

Корпус.

Корпус турбины, имеющий форму улитки обеспечивают защиты от внешних механических воздействий рабочие элементы устройства для нагнетания воздуха.

Привод турбины бензинового мотора осуществляется за счёт подачи отработанного газа энергия которого заставляет ротор вращать лопасти. Сложного в конструкции и работе ничего нет всё понятно и достаточно просто.

При запуске бензинового мотора отработанные газы и цилиндров мотора направляются прямиком в турбину. Они приводят в движение ротор, отдавая ему свою энергию. Далее, через приёмную трубу они поступают в глушитель и выводятся в окружающую среду.

Вал ротора раскручивает колесо компрессора и лопаточное колесо. Они захватывают воздух из окружающей среды, поступающий через воздушный фильтр мотора. Он принудительно подаётся в цилиндры двигателя. Компрессор турбины может повышать давление воздуха до 80%.

Работа турбины бензинового мотора позволяет обогащённую кислородом топливно-воздушную смесь наполнять цилиндры в большом количестве. Объём мотора остаётся неизменным, но его мощность существенно возрастает. В среднем использование турбины даёт возможность увеличить мощность силовой установки машины на 20-30%.

Что необходимо знать для грамотной эксплуатации бензиновой турбины?


Для обеспечения долговечной работы турбины на бензиновом моторе не нужно экономить на количестве и качестве моторного масла. Любители пропускать интервалы замены масла в моторе рано или поздно столкнуться с проблемами и нарушениями в работе турбины. Она очень восприимчива к качеству используемого масла. Дешёвое масло не сможет обеспечить необходимый уровень трения рабочих элементов и они при интенсивном использовании автомобиля достаточно быстро придут в негодность и потребуют замены.

При покупке автомобиля, оснащённого турбиной надо обязательно выполнить замену моторного масла и прочистку всей системы. Смешивать доливая другое масло нельзя, так как оно теряет свои свойства и эффективность его работы стремится к нулю. Полная замена масла позволит избежать вредных воздействий и усилить защиту турбины бензинового мотора.

Есть некоторые особенности эксплуатации мотора, оснащённого турбиной. После длительной поездки на машине двигатель во время остановки сразу глушить не нужно. Необходимо дать ему время поработать на холостых оборотах и немножко остыть. Резкое выключение мотора создаёт температурный перепад отрицательным образом, сказывающийся на прочности и надёжности рабочих элементов турбины мотора.

Преимущества и недостатки турбированного мотора


Главным преимуществом любого бензинового мотора, оснащённого турбиной является увеличение его мощности на 20-30%. При одинаковом объёме с традиционным атмосферным ДВС его мощность выше на треть. Эффективность использования топлива существенно повышается.

Максимальный уровень сгорания топливно-воздушной смеси позволяет существенно снизить выброс загрязняющих веществ в окружающую среду. Максимальное использование турбированных моторов повсеместно настоящая мечта защитника окружающей среды. На этом преимущества турбированного мотора заканчиваются.

Турбированные моторы очень требовательны к качеству используемого топлива и моторного масла. Всё это в совокупности приводит к увеличению расходов на использование автомобиля в долгосрочной перспективе. Обслуживание турбированного мотора потребует от водителя больших расходов денежных средств.

Ремонт турбины требует использования специального оборудования и материалов. Самостоятельно его выполнить очень проблематично. Зачастую век отремонтированной турбины недолог и в конечном итоге потребуется её замена. Это может ощутимо ударить по кошельку владельца машины.

Заключение

Появление турбированных моторов является ещё одной ступенькой развития силовой автомобильных установок. Современные требования к экологической составляющей двигателя существенно ужесточаются и конкуренция между производителями машин обостряется.



← Вернуться

×
Вступай в сообщество «auto-piter.ru»!
ВКонтакте:
Я уже подписан на сообщество «auto-piter.ru»