Построение индикаторной диаграммы. Индикаторная диаграмма двигателя внутреннего сгорания строится с использованием данных расчета рабочего процесса. Индикаторные диаграммы ДВС Индикаторная диаграмма двс опель астра

Подписаться
Вступай в сообщество «auto-piter.ru»!
ВКонтакте:

Рабочий цикл двухтактного двигателя осуществляется за два такта (за один оборот коленчатого вала). Процессы выпуска и наполнения ци­линдра воздухом происходят только на части хода поршня (130-150° пово­рота коленчатого вала), а потому они значительно отличаются от таких же процессов в четырехтактных двигателях.

Процессы очистки цилиндра (выпу­ска) и продувки (наполнения) весьма сложны и зависят и от типа двигателя, и от самого устройства органов продувки и выпуска. В судовых двухтактных дизелях нашли применение различные устройства органов продувки и вы­пуска, т. е. различные системы продувок.

На рис. 8 изображена схема устройства двухтактного дизеля тронкового типа с прямоточно-клапанной продувкой.

В нижней части боковой поверхности рабочего цилиндра расположены продувочные окна, а в крышке цилиндра - выпускные клапаны. Продувоч­ный воздух нагнетается в цилиндр продувочным насосом (в рассматриваемой схеме - продувочный насос роторного типа, или объемный насос). Он рас­положен сбоку и приводится в действие от распределительного вала. Вы­пускные клапаны приводятся в действие от распределительного вала, число оборотов которого равно числу оборотов коленчатого вала.

Индикаторная диаграмма данного двигателя показана на рис. 9.

Первый такт - сжатие воздуха в цилиндре начинается с момента пере­крытия поршнем продувочных окон (точка 7, рис. 8 и 9). Выпускные кла­паны закрыты. Давление воздуха в конце сжатия (точка 2) достигает 35- 50 кГ/см 2 и температура 700-750° С.

Второй такт включает горение топлива, расширение продуктов сго­рания, выпуск и продувку. Процесс подачи топлива в цилиндр и его сго­рание заканчиваются так же, как и в четырехтактном дизеле, и осуще­ствляются в период расширения (точка 3). Начало подачи топлива - точка 2" (рис. 9), а точка 2 - конец сжатия.

Максимальное давление цикла достигает 55-80 кГ/см 2 , а температу­ра 1700-1800° С.

При дальнейшем движении поршня от ВМТ к НМТ происходит расши­рение продуктов сгорания и в момент открытия выпускных клапанов (точка 4), которые открываются раньше открытия кромкой поршня продувоч­ных окон, начинается выпуск.

Открытие выпускных клапанов раньше открытия продувочных окон необходимо для снижения давления в цилиндре до давления продувочного воздуха к моменту открытия продувочных окон.

Следовательно, с момента начала открытия порш­нем продувочных окон (точка 5) до полного их открытия (точка 6) и вновь до момента закры­тия окон (точка 1, при обратном движении поршня от НМТ к ВМТ) происходит процесс продувки цилиндра.

Продувочный воздух, заполняя цилиндр, поднимается вверх, вытесняя отработавшие газы из цилиндра через клапаны в выпускной тракт.

Таким образом происходит одновременная очи­стка цилиндра от отработавших газов и на­полнение цилиндра свежим зарядом воз­духа.

Закрытие выпускных клапанов (конец вы­пуска) производится несколько позже закрытия поршнем продувочных окон (точка 6), что спо­собствует лучшей очистке верхней части цилин­дра от отработавших газов.

После закрытия выпускных клапанов рабочий цикл повторяется в той же последовательности.

На рис. 10 приведена развернутая индикаторная диаграмма рассма­триваемого двухтактного дизеля, а на рис. 11-его круговая диаграмма рас­пределения. Обозначения фаз распределения такие же, как и на рис. 9.

Как видно на индикаторной диаграмме, давление в цилиндре всегда выше атмосферного. Величина минимального давления в цилиндре зависит от величины давления продувочного воздуха. Давление продувочного воз­духа составляет 1,2-1,5 ата и при работе двигателя с наддувом повы­шается до 2,5 ата.

На круговой диаграмме (см. рис. 11) углы обозначают следующие фазы распределения.

Индикаторная диаграмма ДВС (рис.1) строится с использованием данных расчета процессов рабочего цикла двигателя. При построении диаграммы необходимо выбрать масштаб с таким расчетом, чтобы получить высоту равной 1,2... 1,7 ее основания.

Рис.1 Индикаторная диаграмма дизельного двигателя

Рис. 1 Индикаторная диаграмма дизельного двигателя

В начале построения на оси абсцисс (основание диаграммы) в масштабе откладывается отрезок S а = S с + S,

где S – рабочий ход поршня (от ВМТ до НМТ).

Отрезок S с, соответствующий объему камеры сжатия (V с), определяется по выражению S с = S / - 1.

Отрезок S соответствует рабочему объему V h цилиндра, а по величине равен ходу поршня. Отметить точки, соответствующие положению поршня в ВМТ, точки А, В, НМТ.

По оси ординат (высота диаграммы) откладывается давление в масштабе 0,1 МПа в миллиметре.

На линии ВМТ наносятся точки давлений р г, р с, р z .

На линии НМТ наносятся точки давлений р а, р в.

Для дизельного двигателя необходимо еще нанести координаты точки, соответствующей концу расчетного процесса сгорания. Ордината этой точки будет равна р z , а абсцисса определяется по выражению

S z = S с   , мм. (2.28)

Построение линии сжатия и расширения газов можно проводить в такой последовательности. Произвольно между ВМТ и НМТ выбирается не менее 3 объемов или отрезков хода поршня V х1 , V х2 , V х3 (или S х1 , S х2 , S х3).

И подсчитывается давление газов

На линии сжатия

На линии расширения

Все построенные точки плавно соединяются между собой.

Затем производится скругление переходов (при каждом изменении давления на стыках расчетных тактов), учитываемое при расчетах коэффициентом полноты диаграммы.

Для карбюраторных двигателей скругление в конце сгорания (точка Z) проводится по ординате р z = 0,85 Р z mах.

2.7 Определение среднего индикаторного давления по индикаторной диаграмме

Среднее теоретическое индикаторное давление р" i представляет собой высоту прямоугольника, равного площади индикаторной диаграммы в масштабе давления

МПа (2.31)

где F i - площадь теоретической индикаторной диаграммы, мм 2 , ограниченная линиями ВМТ, НМТ, сжатия и расширения, может быть определена с помощью планиметра, методом интегрирования, либо другим способом; S - длина индикаторной диаграммы (ход поршня), мм (расстояние между линиями ВМТ, НМТ);

 p - масштаб давления, выбранный при построении индикаторной диаграммы, МПа / мм.

Действительное индикаторное давление

р i = р i ΄ ∙ φ п, МПа, (2.32)

где  п - коэффициент неполноты площади индикаторной диаграммы; учитывает отклонение действительного процесса от теоретического (скругление при резком изменении давлений, для карбюраторных двигателей  п =0,94.. .0,97; для дизелей  п = 0,92.. .0,95);

р = р r - р а - среднее давление насосных потерь в процессе впуска и выпуска для двигателей без наддува.

После определения р i по индикаторной диаграмме сравнивают его с ранее подсчитанным (формула 1.4) и определяют расхождение в процентах.

Среднее эффективное давление р е равно

р е = р i – р мп,

где р мп определено по формуле 1.6.

Тогда подсчитайте мощность по зависимости
и сравните с заданной. Расхождение должно быть не более 10…15%, если больше следует пересчитать процессы.

Индикаторная диаграмма – зависимость давления рабочего тела от объёма цилиндра (рис. 2) – является наиболее информативным источником, позволяющим анализировать процессы, происходящие в цилиндре двигателя внутреннего сгорания. Такты работы двигателя, осуществляющиеся за четыре хода поршня от ВМТ до НМТ показаны на индикаторной диаграмме в координатах p – V следующими отрезками кривой:

r 0 – a 0 – такт впуска;

a 0 – c – такт сжатия;

c z – b 0 такт рабочего хода (расширения);

b 0 – r 0 такт выпуска.

На диаграмме отмечены следующие характерные точки:

b , r – моменты открытия и закрытия выпускного клапана, соответственно;

u , a – моменты открытия и закрытия впускного клапана, соответственно;

Рис. 2. Типичная индикаторная диаграмма четырехтактного

двигателя внутреннего сгорания

Площадь диаграммы, определяющая работу за цикл, состоит из площади, соответствующей положительной индикаторной работе, полученной за такты сжатия и рабочего хода, и площади, соответствующей отрицательной работе, затрачиваемой на очистку и наполнение цилиндра в тактах впуска и выпуска. Отрицательную работу цикла обычно относят к механическим потерям в двигателе.

Таким образом, общая энергия, сообщаемая валу поршневого двигателя за один цикл L , может быть определена алгебраическим сложением работы тактов L = L вп + L сж + L рх + L вып. Мощность, передаваемая валу, определится произведением этой суммы на количество тактов рабочего хода в единицу времени (n /2) и на число цилиндров двигателя i :

Определенная таким образом мощность двигателя называется средней индикаторной мощностью.

Индикаторная диаграмма позволяет разделить цикл четырехтактного двигателя на следующие процессы:

u r 0 – r – a 0 – a – впуск;

a – θ – c" – сжатие;

θ c" – c – z – f – смесеобразование и сгорание;

z – f – b – расширение;

b b 0 – u – r 0 – r – выпуск.

Приведенная типичная индикаторная диаграмма справедлива и для дизельного двигателя. В этом случае точка θ будет соответствовать моменту подачи топлива в цилиндр.

На диаграмме обозначены:

V c объем камеры сгорания (объем цилиндра над поршнем, находящимся в ВМТ);

V a – полный объем цилиндра (объем цилиндра над поршнем в начале такта сжатия);

V n рабочий объем цилиндра, V n = V a – V c .

Степень сжатия.

Индикаторная диаграмма описывает рабочий цикл двигателя, а ограниченная его площадь индикаторную работу цикла. Действительно, [p ∙ ∆V ] = (Н/м 2) ∙ м 3 = Н ∙ м = Дж.

Если принять, что на поршень действует некоторое условное постоянное давление p i , совершающее в течение одного хода поршня работу, равную работе газов за цикл L , то



L = p i ∙ V h ()

где V h – рабочий объем цилиндра.

Это условное давление p i принято называть средним индикаторным давлением.

Среднее индикаторное давление численно равно высоте прямоугольника с основанием, равным рабочему объему цилиндра V h площадью, равной площади, соответствующей работе L .

Так как полезная индикаторная работа пропорциональна среднему индикаторному давлению p i , совершенство рабочего процесса в двигателе можно оценивать на величину этого давления. Чем больше давление p i , тем больше работа L , и, следовательно, рабочий объем цилиндра используется лучше.

Зная среднее индикаторное давление p i , рабочий объем цилиндра V h , число цилиндров i и частоту вращения коленчатого вала n (об/мин), можно определить среднюю индикаторную мощность четырехтактного двигателя N i

Произведение i V h представляет собой рабочий объем двигателя.

Передача индикаторной мощности на вал двигателя сопровождается механическими потерями вследствие трения поршней и поршневых колец о стенки цилиндров, трения в подшипниках кривошипно–шатунного механизма. Кроме того, часть индикаторной мощности затрачивается на преодоление аэродинамических потерь, возникающих при вращении и колебании деталей, на приведение в действие механизма газораспределения, топливных, масляных и водяных насосов и других вспомогательных механизмов двигателя. Часть индикаторной мощности тратится на удаление продуктов сгорания и заполнение цилиндра свежим зарядом. Мощность, соответствующая всем этим потерям, называется мощностью механических потерь N м.

В отличие от индикаторной мощности, полезную мощность, которую можно получить на валу двигателя, называют эффективной мощностью N е. Эффективная мощность меньше индикаторной на величину механических потерь, т.е.

N е = N i – N м. ()

Мощность N м, соответствующую механическим потерям и эффективную мощность двигателя N е определяют опытным путем при стендовых испытаниях с помощью специальных нагрузочных устройств.

Одним из основных показателей качества поршневого двигателя, характеризующего использование им индикаторной мощности для совершения полезной работы является механический КПД, определяемый как отношение эффективной мощности к индикаторной:

η м = N е /N i . ()

Общую энергию, сообщаемую валу поршневого двигателя, можно определить алгебраическим сложением работы тактов и умножив сумму на число рабочих тактов в единицу времени (n /2) и число цилиндров двигателя. Мощность, определяемая таким образом, может быть получена путем интегрирования зависимости давления в функции от объема изображенной на индикаторной диаграмме (рис 4.2,б), и называется средней индикаторной мощностью N . Эту мощность часто связывают с понятием индикаторного среднего эффективного давления р i , рассчитывае­мого следующим образом:

Эффективная мощность N e есть произведение индикаторной мощности N на механический КПД двигателя. Механический КПД двигателя уменьшается с увеличением частоты вращения двигателя из–за потерь на тре­ние и привод агрегатов.

Для построения характеристик авиационного поршневого двигателя его испытывают на балансирном станке с использованием воздушного винта изменяемого шага. Балансирный станок обеспечивает замер величины крутящего момента, числа оборотов коленчатого вала и расхода топлива. По величине замеренного крутящего момента М кр и числу оборотов n определяется измеренная эффективная мощность двигателя

Если двигатель снабжен редуктором, снижающим обороты винта, то формула для замеренной эффективной мощности имеет вид:

где i р – передаточное число редуктора.

Учитывая зависимость эффективной мощности двигателя от атмосферных условий, замеренную мощность для сравнения результатов испытаний приводят к стандартным атмосферным условиям по формуле

где N e – эффективная мощность двигателя, приведенная к стандартным атмосферным условиям;

t изм – температура наружного воздуха во время испытаний, ºС;

B – давление наружного воздуха, мм.рт.ст.,

р – абсолютная влажность воздуха, мм.рт.ст.

Эффективный удельный расход топлива g е определяется по формуле:

где G T и – расход топлива и эффективная мощность двигателя, измеренные при испытаниях.

  • 2. Процессы газообмена 2-х и 4-х тактных дизельных двигателей. Понятие наддува. Импульсный газотурбинный и наддув при постоянном давлении. Коэффициент избытка воздуха.
  • 3. Генераторы судовой электростанции. Техническое обслуживание щеточного аппарата синхронного генератора.
  • 2. Принцип работы холодильной установки. Холодильные агенты и хладоносители.
  • 3. Техническое обслуживание кислотных аккумуляторных батарей (акб).
  • 4. Техническое обслуживание судовых помещений.
  • 1. Международная конвенция о грузовой марке 1966 года.
  • 3. Измерение сопротивления изоляции электрооборудования. Техническое обслуживание распределительных устройств.
  • 4.Техническое обслуживание судовых систем.
  • 1.Категории затопленных отсеков. Влияние свободной поверхности на остойчивость на больших углах крена.
  • 2.Судовые паровые котлы: классификация, устройство водотрубных, огнетрубных, комбинированных и утилизационных котлов, устройства для сжигания топлива в котлах.
  • Процесс сгорания топлива
  • Подача воздуха
  • Сгорание топлива
  • 3. Средства, обеспечивающие распределение нагрузки при параллельной работе генераторов.
  • 4.Осмотр судна в доке и на плаву.
  • 1. Конструктивные меры противопожарной безопасности.
  • 2.Основные термодинамические процессы для идеальных газов.
  • 3.Судовые силовые трансформаторы.
  • 4.Техническое обслуживание дизелей и их отдельных сборочных единиц и деталей.
  • 1. Конвенция солас.
  • 2. Цикл Карно.
  • 3. Техническое обслуживание взрывозащищенного электрооборудования и сетей. Осмотры электрооборудования
  • 4.Очистки, осмотры и испытания котлов.
  • 1. Международный кодекс по спасательным средствам. Индивидуальные и коллективные спасательные средства.
  • 3. Аварийные дизель - генераторы и система их автоматического запуска.
  • 4.Техническое обслуживание элементов котла.
  • 1. Международная конвенция марпол по предотвращению загрязнения с судов. Судовые документы по пзм, сроки их действия, возобновление документов.
  • 2.Основные понятия о машинах и механизмах. Кинематическая пара, кинематическая цепь. Виды передач.
  • 3. Классификация полупроводниковых преобразователей электроэнергии.
  • 4.Техническое обслуживание вспомогательных механизмов и оборудования.
  • 2. Сопротивление материалов: виды деформаций, напряжений, нагрузок.
  • 3. Частотные преобразователи для управления асинхронными электродвигателями.
  • 4.Смазывание вспомогательных механизмов и оборудования, техническое обслуживание подшипников.
  • 1. Судовые системы, предназначенные для предотвращения возникновения или распространения пожара. Средства пожаротушения на судах и их классификация. Противопожарное снабжение.
  • 2.Детали машин: детали и узлы общего и специального назначения, виды соединений.
  • 3. Щитовые электроизмерительные приборы (эп). Подключение электроизмерительных приборов. Погрешность результата измерения.
  • 4.Техническое обслуживание холодильных установок. Удаление хладона. Наполнение системы хладоном и дозарядка.
  • 1. Классификация судовых помещений по назначению. Размещение помещений в основном корпусе судна.
  • 2. Основные неподвижные и подвижные детали судовых дизелей.
  • 3. Электрическое освещение – основное и аварийное. Судовые электронагревательные и отопительные приборы и устройства. Обслуживание и предъявляемые к ним требования.
  • 4. Система технического обслуживания судна. Общие требования по то судна. План-графики по то стс и к.
  • 1. Судовые документы, требуемые ктм рф. Судовые документы, выдаваемые рмрс России в соответствии с требованиями мк солас 74/88 с поправками. Мппсс-72 и регламента радиосвязи 1997 г.
  • 2. Подготовка дизельной установки к действию после длительной стоянки, во время которой производились работы, связанные с разборкой. Подготовка дизельной установки к действию в зимнее время.
  • 3. Режимы работы судовых электроприводов. Факторы, обеспечивающие нормальную работу судовых электрических машин. Защита электродвигателей в электроприводах.
  • 4. Надзор за судами в эксплуатации. Использование результатов в процессе технического надзора за судами.
  • 2. Работа дизеля в режимах и условиях, отличных от нормальных. Подготовка к манёврам и остановка дизельной установки.
  • 3. Приборы контроля и сигнализации. Датчики и индикаторы, применяемые в судовых системах. Аварийно-предупредительная сигнализация (апс).
  • 4. Виды и порядок прохождения инструктажа по технике безопасности.
  • 1. Мкуб - его цели и требования. Основные резолюции имо по внедрению мкуб.
  • International Management Code for the Safe Operation of Ships and for Pollution Prevention (International Safety Management (ism) Code) » - мкуб
  • 2. Ввод дизеля в режим эксплуатационной нагрузки. Работа гд и обслуживающих его систем в сложных условиях.
  • 3. Средства автоматики и дистанционного управления. Готовность к действию и ввод в действие электрических систем автоматики. Основные требования к системам дау.
  • 4. Техника безопасности при обслуживании дизельных установок.
  • 1. Система управления безопасностью судоходной компании. Назначенное лицо. Национальные нормативные документы по внедрению мкуб.
  • 2. Контроль и регулировка параметров рабочего процесса судовых дизелей.
  • 3. Техническая документация по судовому электрооборудованию, виды технической документации. Электрические схемы и чертежи, их отличие друг от друга.
  • 4. Работа главной дизельной установки в аварийных условиях и во время обкатки.
  • 1. Международная конвенция марпол-73/78: правила регистрации операций с нефтью и нефтепродуктами. Ответственность и контроль.
  • 2.Подготовка котла к действию, обслуживание котла в действии, вывод котла из действия.
  • 3. Проверки работы адг, сети аварийного освещения, авральной и пожарной сигнализации, водонепроницаемых дверей; периодичность проверок.
  • 1. Кодекс торгового мореплавания рф. Устав службы на судах ммф. Дисциплинарный устав.
  • 2. Обслуживание котла на режимах, отличных от нормальных. Водный режим котла. Меры предосторожности при упуске воды из котла. Хранение бездействующего котла.
  • 3. Электробезопасность. Защита от поражения электрическим током, защитное заземление. Диэлектрические средства защиты, периодичность проверок их на электрическую прочность.
  • 4. Контроль технического состояния корпусных конструкций. Виды и методы неразрушающего контроля и диагностики технического состояния корпуса и конструкций судна.
  • 2.Типы насосов, входящих в состав судовых систем. Птэ насосов по типам.
  • 3. Функции элементов сар и назначение. Система дистанционного автоматического управления гд.
  • 4. Требования птэ по технической эксплуатации и обслуживанию машинных и котельных помещений. Предремонтная дефектация элементов корпуса судна, организация и этапы выполнения.
  • 1. «Наставление по предотвращению загрязнения с судов». Пломбирование клапанов на судне. Бункеровочные операции.
  • 2. Работа гд с выключенными цилиндрами. Регулировка параметров рабочего процесса гд.
  • 4. Взаимодействие должностных лиц в процессе ремонта. Доковый ремонт. Доковый ремонт
  • 2. Работа гд с перегрузкой. Работа гд в режиме холостого хода. Подготовка гд к маневрам и остановке.
  • 3. Аварийный безбатарейный телефон для связи мостик-цпу- румпельная. Частоты судовой рабочей носимой укв.
  • 4. Написание ремонтной ведомости. Проведение тендера на ремонт судна. Распределение обязанностей на предстоящий ремонт судна.
  • 2. Указания по техническому обслуживанию вентиляторов и поршневых компрессоров.
  • 3. Общая характеристика рулевых электроприводов и требования к ним.
  • 4. Испытания судна после ремонта. Окончание ремонта на заводе. Гарантийный период после ремонта.
  • 1. Якорное устройство, назначение и состав. Общие сведения и классификация. Швартовное устройство. Общие сведения, назначение и классификация. Якорное устройство.
  • Якорная цепь.
  • 2. Указания по техническому обслуживанию теплообменных аппаратов, фильтров, сосудов под давлением и тормозных устройств.
  • 3. Подготовка грузовых устройств к работе. Электрическое торможение грузоподъемников переменного тока.
  • Среднее эффективное Ре давление это давление которое зависит от количества топлива впрыскиваемого в цилиндр.

    Эффективная мощность Ре - мощность, снимаемая с соединительного фланца вала двигателя, т. е. отдаваемая валопроводу, генератору или любому потребителю энергии на данном режиме работы

    Индикаторная мощность Рz - мощность развиваемая газами внутри рабочих цилиндров двигателя, называют индикаторной.

    3. Основные электрические величины – электрический ток, напряжение, мощность

    электрического тока, единицы измерения.

    ЭЛЕКТРИ́ЧЕСКИЙ ТОК - УПОРЯДОЧЕННОЕ НЕКОМПЕНСИРОВАННОЕ ДВИЖЕНИЕ СВОБОДНЫХ ЭЛЕКТРИЧЕСКИ ЗАРЯЖЕННЫХ ЧАСТИЦ ПОД ВОЗДЕЙСТВИЕМ ЭЛЕКТРИЧЕСКОГО ПОЛЯ.

    НАПРЯЖЕНИЕ – КОЛЛИЧЕСТВО ЭНЕРГИИ ЗАТРАЧИВАЕМОЕ НА ПЕРЕМЕЩЕНИЕ ИЗ ОДНОЙ ТОЧКИ В ДРУГУЮ.

    МОЩНОСТЬ ЭЛЕКТРИЧЕСКОГО ТОКА – СКОРОСТЬ ИЗМЕНЕНИЯ ЭНЕРГИИ. МОЩНОСТЬ ЭЛЕКТРИЧЕСКОГО ТОКА РАВНА РАБОТЕ ЭЛЕКТРИЧЕСКОГО ТОКА, ПРОИЗВОДИМОЙ В ТЕЧЕНИЕ ОДНОЙ СЕКУНДЫ.

    4. Общие требования к техническому обслуживанию стс и к.

    ПОД СУДОВЫМИ ТЕХНИЧЕСКИМИ СРЕДСТВАМИ ПОНИМАЮТСЯ УСТАНОВКИ, АГРЕГАТЫ, МЕХАНИЗМЫ И ДРУГОЕ ОБОРУДОВАНИЕ СУДНА, ОБЕСПЕЧИВАЮЩИЕ ЕГО РАБОТОСПОБНОСТЬ В СООТВЕТСТВИИ С НАЗНАЧЕНИЕМ.

    1. Общие положения 1.1. Техническая эксплуатация судовых технических средств и конструкций (СТС и К) должна производиться в соответствии с инструкциями заводов-изготовителей и требованиями настоя­щих Правил.

    1.2. Все операции связанные с вводом в действие, изменени­ем режимов работы, выводом из действия, проворачиванием и разборкой технических средств, должны производиться с разре­шения, по указанию или с извещением должностных лиц (капитана, вахтенного помощника капитана, старшего механи­ка, вахтенного механика, ответственного по заведованию), если это предусмотрено соответствующими пунктами Правил или другими документами, регламентирующими действия судового экипажа. 1.3. Бездействия, связанные с техническим использованием, обслуживанием и ремонтом СТСиК должны регистрироваться вахтенным механиком в машинном журнале. 1.4. На судне должен быть организован учет технического со­стояния СТСиК а также учет наличия и движения сменно-запасных частей и предметов, материально-технического снабжения по заведованиям.

    1.5. При в воде в действие оборудования, убедиться что оборудование исправно, КИП исправны и так далее.

    БИЛЕТ 2.

    1. Посадка и остойчивость судна, теоретические основы. Остойчивость, метацентрическая высота. Информация об остойчивости.

    ОСТО́ЙЧИВОСТЬ - способность плавучего средства противостоять внешним силам, вызывающим его крен или дифферент и возвращаться в состояние равновесия.

    Судно плавает на поверхности воды под действием двух основных сил: силы тяжести и Архимедовой силы. Сила тяжести -“тянет судно вниз”, равна его весу и приложена к центру тяжести судна ЦТ. Сила плавучести или Архимедова сила –“выталкивает судно из воды”, равна его водоизмещению и приложена в центре подводного объема ЦВ судна.

    В “прямом” положении судна эти силы уравновешивают друг друга и лежат на одной вертикальной линии. При крене форма подводной части корпуса изменится, ЦВ сместится в сторону накрененного борта, и возникнет так называемыйвосстанавливающий момент, который противодействует крену. При наклонении судна ЦВ как бы поворачивается вокруг точки, называемой метацентром m.

    Расстояние от метацентра m до центра тяжести ЦТ (метацентрическая высота) является характеристикой остойчивости судна. Чем меньше судно, тем больше должна быть метацентрическая высота. Чем ниже расположен центр тяжести, тем судно остойчивее. Существует простое правило: КАЖДЫЙ КИЛОГРАММ ПОД ВАТЕРЛИНИЕЙ ПОВЫШАЕТ ОСТОЙЧИВОСТЬ, А КАЖДЫЙ КИЛОГРАММ НАД ВАТЕРЛИНИЕЙ УХУДШАЕТ ЕЕ.

  • ДЕЙСТВИТЕЛЬНЫЕ ЦИКЛЫ ДВС

    Отличие действительных циклов четырехтактных двигателей от теоретических

    Наибольший КПД можно теоретически получить только в результате использования термодинамического цикла, варианты которого были рассмотрены в предыдущей главе.

    Важнейшие условия протекания термодинамических циклов:

    · неизменность рабочего тела;

    · отсутствие всяких тепловых и газодинамических потерь, кроме обязательного отвода теплоты холодильником.

    В реальных поршневых ДВС механическая работа получается в результате протекания действительных циклов.

    Действительным циклом двигателя называется совокупность периодически повторяющихся тепловых, химических и газодинамических процессов, в результате которых термохимическая энергия топлива преобразуется в механическую работу.

    Действительные циклы имеют следующие принципиальные отличия от термодинамических циклов:

    Действительные циклы являются разомкнутыми, и каждый из них осуществляется с использованием своей порции рабочего тела;

    Вместо подвода теплоты в действительных циклах происходит процесс сгорания, который протекает с конечными скоростями;

    Изменяется химический состав рабочего тела;

    Теплоемкость рабочего тела, представляющего собой реальные газы изменяющегося химического состава, в действительных циклах постоянно меняется;

    Идет постоянный теплообмен между рабочим телом и окружающими его деталями.

    Все это приводит к дополнительным потерям теплоты, что в свою очередь ведет к снижению КПД действительных циклов.

    Индикаторная диаграмма

    Если термодинамические циклы изображают зависимость изменения абсолютного давления (р ) от изменения удельного объема (υ ), то действительные циклы изображаются как зависимости изменения давления (р ) от изменения объема (V ) (свернутая индикаторная диаграмма) или изменения давления от угла поворота коленчатого вала (φ), которая называется развернутой индикаторной диаграммой.

    На рис. 1 и 2 показаны свернутая и развернутая индикаторные диаграммы четырехтактных двигателей.

    Развернутая индикаторная диаграмма может быть получена экспе­риментально с помощью специального прибора - индикатора давления. Индикаторные диаграммы можно получить и расчетным путем на основе теплового расчета двигателя, но менее точные.

    Рис. 1. Свернутая индикаторная диаграмма четырехтактного двигателя
    с принудительным воспламенением

    Рис. 2. Развернутая индикаторная диаграмма четырехтактного дизеля

    Индикаторные диаграммы используются для изучения и анализа процессов, протекающих в цилиндре двигателя. Так, например, площадь свернутой индикаторной диаграммы, ограниченная линиями сжатия, сгорания и расширения, соответствует полезной или индикаторной работе L i действительного цикла. Величиной индикаторной работы характеризуется полезный эффект действительного цикла:

    , (3.1)

    где Q 1 - количество подведенной в действительном цикле теплоты;

    Q 2 - тепловые потери действительного цикла.

    В действительном цикле Q 1 зависит от массы и теплоты сгорания топлива, вводимого в двигатель за цикл.

    Степень использования подводимой теплоты (или экономичность действительного цикла) оценивают индикаторным КПД η i , который представляет собой отношение теплоты, преобразованной в полезную работу L i , к теплоте подведенного в двигатель топлива Q 1 :

    , (3.2)

    С учетом формулы (1) формулу (2) индикаторного КПД можно записать так:

    , (3.3)

    Следовательно, теплоиспользование в действительном цикле зависит от величины тепловых потерь. В современных ДВС эти потери составляют 55 –70 %.

    Основные составляющие тепловых потерь Q 2 :

    Потери теплоты с отработавшими газами в окружающую среду;

    Потери теплоты через стенки цилиндра;

    Неполнота сгорания топлива из-за местного недостатка кислорода в зонах горения;

    Утечка рабочего тела из рабочей полости цилиндра из-за неплотности прилегающих деталей;

    Преждевременный выпуск отработавших газов.

    Для сравнения степени использования теплоты в действительных и термодинамических циклах используют относительный КПД

    .

    В автомобильных двигателях η o от 0,65 до 0,8.

    Действительный цикл четырехтактного двигателя совершается за два оборота коленчатого вала и состоит из следующих процессов:

    Газообмена - впуск свежего заряда (см. рис. 1, кривая frak ) и выпуск отработавших газов (кривая b"b"rd );

    Сжатия (кривая аkс"с" );

    Сгорания (кривая c"c"zz" );

    Расширения (кривая z z"b"b" ).

    При впуске свежего заряда поршень движется, освобождая над собой объем, который заполняется смесью воздуха с топливом в карбюраторных двигателях и чистым воздухом в дизелях.

    Начало впуска определяется открытием впускного клапана (точка f ), конец впуска - его закрытием (точка k ). Начало и конец выпуска соответствуют открытию и закрытию выпускного клапана соответственно в точках b" и d .

    Не заштрихованная зона b"bb" на индикаторной диаграмме соответствует потере индикаторной работы вследствие падения давления в результате открытия выпускного клапана до прихода поршня в НМТ (предварение выпуска).

    Сжатие фактически осуществляется с момента закрытия впускного клапана (кривая k-с" ). До закрытия впускного клапана (кривая а-k ) давление в цилиндре остается ниже атмосферного (p 0 ).

    В конце процесса сжатия топливо воспламеняется (точка с" ) и быстро сгорает с резким нарастанием давления (точка z ).

    Так как воспламенение свежего заряда происходит не в ВМТ, и сгорание протекает при продолжающемся перемещении поршня, расчетные точки с и z не соответствуют реально протекающим процессам сжатия и сгорания. В результате площадь индикаторной диаграммы (заштрихованная зона), а значит и полезная работа цикла меньше термодинамической или расчетной.

    Воспламенение свежего заряда в бензиновых и газовых двигателях осуществляется от электрического разряда между электродами искровой свечи.

    В дизелях топливо воспламеняется за счет теплоты нагретого от сжатия воздуха.

    Образовавшиеся в результате сгорания топлива газообразные продукты создают давление на поршень, вследствие чего совершается такт расширения или рабочий ход. При этом энергия теплового расширения газа преобразуется в механическую работу.



    ← Вернуться

    ×
    Вступай в сообщество «auto-piter.ru»!
    ВКонтакте:
    Я уже подписан на сообщество «auto-piter.ru»